The study of microbial blockage during the recharge process of ground source heat pumps is of great engineering significance in addressing for solving ground subsidence. The concentration deposition characteristics, breakthrough curve, and permeability coefficient of Escherichia coli in porous media were investigated using a sand layer blockage device. The experimental results show that: (1) the layered position tends to accumulate with Escherichia coli. During reinjection, the accumulated Escherichia coli can be mobilized by increasing the flow rate, thereby increasing the migration path of Escherichia coli, thus improving reinjection efficiency. (2) Under different flow rates, Escherichia coli exhibits different relationships between water pressure and time in two different materials. The uniformity of glass bead pores and smooth surfaces hinder the deposition of Escherichia coli. On the contrary, the internal non-uniformity of gravel facilitates the deposition of Escherichia coli. In practical engineering, increasing the flow rate can help achieve rebound. (3) Escherichia coli generally undergoes three modes of movement in porous media: blockage, migration, and stable accumulation. When the permeability coefficient K decreases, the concentration of Escherichia coli in the end effluent is lower. On the contrary, when the permeability coefficient K increases, the concentration of Escherichia coli in the end effluent is higher. The results have certain practical significance for the long-term stable operation of water source heat pumps.
Key words
water source heat pump /
escherichia coli /
sedimentary characteristics /
permeability coefficient /
surface subsidence
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[M]. 2021.
The State Council.Notice of the State Council on issuing the action plan for peaking carbon emissions before 2030[M]. 2021.
[2] 邬小波. 地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J]. 暖通空调, 2004, 34(1): 19-22.
WU X B.Development of ground water loop for ATES and ground water source heat pump systems[J]. Journal of HV & AC, 2004, 34(1): 19-22.
[3] KALUARACHCHI J J, PARKER J C.Effects of hysteresis with air entrapment on water flow in the unsaturated zone[J]. Water resources research, 1987, 23(10): 1967-1976.
[4] 赵军, 张程远, 刘泉声. 地下水源热泵砂层阻塞试验研究(Ⅱ)[J]. 岩石力学与工程学报, 2013, 32(S2): 3363-3369.
ZHAO J, ZHANG C Y, LIU Q S.Experimental study of particles clogging in sand layer of ground-source heat pump(ⅱ)[J]. Chinese journal of rock mechanics and engineering, 2013, 32(S2): 3363-3369.
[5] 赵军, 刘泉声, 张程远. 水源热泵井回灌堵塞颗粒迁移模型的建立[J]. 岩土力学, 2013, 34(11): 3249-3253.
ZHAO J, LIU Q S, ZHANG C Y.Establishment of particle transport model in water source heat pump of physical clogging reinjection well[J]. Rock and soil mechanics, 2013, 34(11): 3249-3253.
[6] 赵军, 张程远, 刘泉声. 水源热泵回灌井悬浮颗粒运移和沉积物理特性试验模型研究[J]. 岩石力学与工程学报, 2014, 33(2): 257-263.
ZHAO J, ZHANG C Y, LIU Q S.Test study of physical properties of suspended particles migration and deposition in water source heat pump injection well[J]. Chinese journal of rock mechanics and engineering, 2014, 33(2): 257-263.
[7] 赵军, 吴雨明, 张程远. 地下水源热泵物理阻塞系统介质长度改变时沉积特性参数研究[J]. 太阳能学报, 2019, 40(5): 1193-1197.
ZHAO J, WU Y M, ZHANG C Y.Study on parameters of deposition characteristics of medium length of water source heat pump system[J]. Acta energiae solaris sinica, 2019, 40(5): 1193-1197.
[8] 何满潮, 刘斌, 姚磊华, 等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版), 2002, 32(4): 374-377.
HE M C, LIU B, YAO L H, et al.Study on hydraulic conductivity during geothermal reinjection[J]. Journal of Jilin University(earth scierce edition), 2002, 32(4): 374-377.
[9] 曾晓佳. 天然滤床淤塞机理及防治研究[D]. 成都: 成都理工大学, 2007.
ZENG X J.A study on silting and prophylactico-therapeutic measures of filtering bed[D]. Chengdu: Chengdu University of Technology, 2007.
[10] BENNETT P, SIEGEL D I.Increased solubility of quartz in water due to complexing by organic compounds[J]. Nature, 1987, 326(6114): 684-686.
[11] RAFFERTY K D.Water chemistry issues in geothermal heat pump systems[J]. ASHRAE transactions, 2004, 110(1): 550-555.
[12] THULLNER M, BAVEYE P.Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media[J]. Biotechnology and bioengineering, 2008, 99(6): 1337-1351.
[13] NAGANO K, MOCHIDA T, OCHIFUJI K.Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage[J]. Applied thermal engineering, 2002, 22(12): 1299-1311.
[14] 赵军, 汪瑶. 水源热泵回灌中大肠杆菌阻塞迁移沉积特性参数试验研究[J]. 太阳能学报, 2024, 45(7): 415-419.
ZHAO J, WANG Y.Experimental study on blocking migration and sedimentation characteristics of escherichia coli in water source heat pump recharge[J]. Acta energiae solaris sinica, 2024, 45(7): 415-419.
[15] BRENNER H.The slow motion of a sphere through a viscous fluid towards a plane surface[J]. Chemical engineering science, 1961, 16(3/4): 242-251.