RESEARCH ON AGING ASSESSMENT AND POWER GENERATION PREDICTION OF PHOTOVOLTAIC SYSTEM BASED ON MONTE CARLO METHOD

Tang Shuangshuang, Bai Jianbo, Hou Tiancai, Nie Haiyuan, Xiang Lipeng, Zheng Shuang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 311-319.

PDF(1519 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1519 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 311-319. DOI: 10.19912/j.0254-0096.tynxb.2024-0089

RESEARCH ON AGING ASSESSMENT AND POWER GENERATION PREDICTION OF PHOTOVOLTAIC SYSTEM BASED ON MONTE CARLO METHOD

  • Tang Shuangshuang1, Bai Jianbo2, Hou Tiancai1, Nie Haiyuan1, Xiang Lipeng1, Zheng Shuang1
Author information +
History +

Abstract

A comprehensive photovoltaic system aging assessment and power generation prediction model was constructed to address the issue of components aging during the operation of the photovoltaic system, and its effectiveness was validated. The Monte Carlo method was used to simulate the inconsistent changes in electrical parameters due to component aging to calculate the total aging rate and mismatch rate caused by varying aging rates. Additionally, the annual power generation during the operation of the photovoltaic system was predicted based on the total aging rate. The total aging rate and power generation prediction of different photovoltaic systems over 25 years of operation were simulated based on case analysis. The comparison results show that the algorithm model using Monte Carlo exhibits high accuracy and can be applied to evaluate the total aging rate and predict future power generation of the photovoltaic system during operation. Finally, phased maintenance recommendations were provided based on the aging patterns of photovoltaic systems.

Key words

photovoltaic system / power generation / aging / mismatch / Monte Carlo method

Cite this article

Download Citations
Tang Shuangshuang, Bai Jianbo, Hou Tiancai, Nie Haiyuan, Xiang Lipeng, Zheng Shuang. RESEARCH ON AGING ASSESSMENT AND POWER GENERATION PREDICTION OF PHOTOVOLTAIC SYSTEM BASED ON MONTE CARLO METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 311-319 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0089

References

[1] 马伟伟. 基于序优化的分布式光伏配电网储能系统容量评估[J]. 太阳能学报, 2023, 44(9): 557.
MA W W.Capacity evaluation of distributed photovoltaic distribution network energy storage system based on sequential optimization[J]. Acta energiae solaris sinica, 2023, 44(9): 557.
[2] 刘卫亮, 姜锴越, 许之胜, 等. 基于数字孪生与融合神经网络的光伏阵列故障诊断[J]. 太阳能学报, 2024, 45(11): 303-312.
LIU W L, JIANG K Y, XU Z S, et al.Fault diagnosis of photovoltaic array based on digital twin and fusion neural network[J]. Acta energiae solaris sinica, 2024, 45(11): 303-312.
[3] MALIK P, CHANDEL R, CHANDEL S S.A power prediction model and its validation for a roof top photovoltaic power plant considering module degradation[J]. Solar energy, 2021, 224: 184-194.
[4] MATEO C, HERNÁNDEZ-FENOLLOSA M A, MONTERO Á, et al. Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate[J]. Renewable energy, 2022, 186: 74-88.
[5] AZIZI A, LOGERAIS P O, OMEIRI A, et al.Impact of the aging of a photovoltaic module on the performance of a grid-connected system[J]. Solar energy, 2018, 174: 445-454.
[6] MANGANIELLO P, BALATO M, VITELLI M.A survey on mismatching and aging of PV modules: the closed loop[J]. IEEE transactions on industrial electronics, 2015, 62(11): 7276-7286.
[7] 杨威, 杨洋. 组件功率衰减对光伏发电系统效率的影响[J]. 太阳能, 2017(5): 55-57.
YANG W, YANG Y.Effect of component power attenuation on photovoltaic system efficiency[J]. Solar energy, 2017(5): 55-57.
[8] 叶洪吉, 卫东, 郭倩, 等. 基于设计信息的分布式光伏电站预测发电量计算方法[J]. 太阳能学报, 2021, 42(4): 253-259.
YE H J, WEI D, GUO Q, et al.Calculation method of power generation forecast of distributed PV power station based on design information[J]. Acta energiae solaris sinica, 2021, 42(4): 253-259.
[9] TANG X P, ZOU C F, YAO K, et al.Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method[J]. Applied energy, 2019, 254: 113591.
[10] SREENUCH T, ALGHASSI A, PERINPANAYAGAM S, et al.Probabilistic Monte-Carlo method for modelling and prediction of electronics component life[J]. International journal of advanced computer science and applications, 2014, 5(1).
[11] HUANG W, SHAO C Z, DONG M, et al.Modeling the aging-dependent reliability of transformers considering the individualized aging threshold and lifetime[J]. IEEE transactions on power delivery, 2022, 37(6): 4631-4645.
[12] 王跃, 白建波, 李建. 光伏发电系统精细化逐时建模方法与应用案例分析[J]. 太阳能, 2021(5): 59-66.
WANG Y, BAI J B, LI J.Refined hourly modeling method of PV power generation system and analysis of application cases[J]. Solar energy, 2021(5): 59-66.
[13] 白建波. 太阳能光伏系统建模、仿真与优化[M]. 北京: 电子工业出版社, 2014.
BAI J B.Modeling, simulation and optimization of solar photovoltaic system[M]. Beijing: Publishing House of Electronics Industry, 2014.
[14] BOYSON W, GALBRAITH G M, KING D, et al.Performance model for grid-connected photovoltaic inverters[R]. Sandia National Laboratories, 2007.
[15] 黄盛娟, 唐荣, 唐立军. 光伏组件功率衰减分析研究[J]. 太阳能, 2015(6): 21-25.
HUANG S J, TANG R, TANG L J.Research on power attenuation analysis of photovoltaic modules[J]. Solar energy, 2015(6): 21-25.
[16] TAO Y K, BAI J B, PACHAURI R K, et al.Parameter extraction of photovoltaic modules using a heuristic iterative algorithm[J]. Energy conversion and management, 2020, 224: 113386.
[17] 中华人民共和国工业和信息化部. 光伏制造行业规范条件(2018年本)[S]. 2018-01-15.
Ministry of Industry and Information Technology of the People’s Republic of China. Specifications and conditions of photovoltaic manufacturing industry(2018)[S]. 2018-01-15.
[18] 张凯, 黄嘉培, 韩会丽, 等. 不同技术类型光伏组件的户外发电性能及衰减分析[J]. 太阳能, 2021(3): 25-31.
ZHANG K, HUANG J P, HAN H L, et al.Outdoor power generation performance and attenuation analysis of PV modules with different technologies[J]. Solar energy, 2021(3): 25-31.
PDF(1519 KB)

Accesses

Citation

Detail

Sections
Recommended

/