NEW DIFFERENTIAL PROTECTION SCHEME APPLICABLE TO HYBRID MULTI-INFEED SYSTEMS FOR RENEWABLE ENERGY TRANSMISSION

Gao Shuping, Li Xiaofang, Song Guobing, Zheng Han, Duan Yunqing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 136-148.

PDF(1722 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1722 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 136-148. DOI: 10.19912/j.0254-0096.tynxb.2024-0095

NEW DIFFERENTIAL PROTECTION SCHEME APPLICABLE TO HYBRID MULTI-INFEED SYSTEMS FOR RENEWABLE ENERGY TRANSMISSION

  • Gao Shuping1,2, Li Xiaofang1,2, Song Guobing3, Zheng Han1,2, Duan Yunqing1,2
Author information +
History +

Abstract

To ensure that renewable energy sources, such as photovoltaics and wind power, can further adapt to long-distance transmission and scenarios with multiple concentrated landing points, this paper constructs a novel hybrid DC multi-infeed power system consisting of LCC-VSC and LCC-MMC. Aiming at the problems of high impedance rejection in the fault component criterion area and the decreased sensitivity of the full current criterion caused by the multi-infeed of renewable energy DC, an optimized scheme for AC system current differential protection is proposed based on different AC line faults, which eliminates DC infeed components and load currents. The simulation output fault data is generated on PSCAD/EMTDC, and the protection algorithm is verified by using MATLAB to process the fault data. The simulation results proved that the improved scheme could identify internal and external faults and operate correctly. Compared with the traditional protection method, it can operate reliably when grounded in high resistance, and it has the characteristics of high sensitivity, strong resistance to transition resistance and can not be affected by distributed capacitance.

Key words

hybrid multi-infeed system / renewable energy / AC transmission line / current differential protection / HVDC transmission technology / fault component criterion / sensitivity

Cite this article

Download Citations
Gao Shuping, Li Xiaofang, Song Guobing, Zheng Han, Duan Yunqing. NEW DIFFERENTIAL PROTECTION SCHEME APPLICABLE TO HYBRID MULTI-INFEED SYSTEMS FOR RENEWABLE ENERGY TRANSMISSION[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 136-148 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0095

References

[1] ALASSI A, BAÑALES S, ELLABBAN O, et al. HVDC transmission: technology review, market trends and future outlook[J]. Renewable and sustainable energy reviews, 2019, 112: 530-554.
[2] 丁明, 潘浩, 史盛亮, 等. 考虑线路拓展的交直流混合微电网规划研究[J]. 太阳能学报, 2019, 40(3): 656-665.
DING M, PAN H, SHI S L, et al.Research on AC/DC hybrid microgrid planning considering line expansion[J]. Acta energiae solaris sinica, 2019, 40(3): 656-665.
[3] 韩平平, 陈凌琦, 丁明, 等. 一种适用于风电外送的混合高压直流输电系统[J]. 太阳能学报, 2019, 40(8): 2162-2169.
HAN P P, CHEN L Q, DING M, et al.A kind of hybrid HVDC transmission system suitable for wind power connection[J]. Acta energiae solaris sinica, 2019, 40(8): 2162-2169.
[4] 刘文韬, 张哲任, 徐政. 适用于纯新能源基地送出的混合型直流输电方案[J]. 太阳能学报, 2023, 44(12): 533-543.
LIU W T, ZHANG Z R, XU Z.Hybrid HVDC transmission scheme of pure renewable energy base[J]. Acta energiae solaris sinica, 2023, 44(12): 533-543.
[5] 肖浩, 李银红, 何璇, 等. 混合多馈入直流系统换相失败免疫水平快速评估方法[J]. 中国电机工程学报, 2017, 37(17): 4986-4998.
XIAO H, LI Y H, HE X, et al.A rapid assessment method of commutation failure immunity level for hybrid multi-infeed HVDC transmission systems[J]. Proceedings of the CSEE, 2017, 37(17): 4986-4998.
[6] 叶全, 郭春义. 多馈入直流输电系统换相失败风险区域识别(一): 计及故障期间直流电流动态特性的换相失败判别方法[J]. 中国电机工程学报,2023,43(21):8182-8192.
YE Q, GUO C Y.Commutation failure risk areas identification for multi-infeed HVDC system(Part Ⅰ):a method to discriminate the commutation failure considering the dynamic change of DC current under fault condition[J]. Proceedings of the CSEE, 2023, 43(21): 8182-8192.
[7] 李国庆, 王拓, 辛业春, 等. 多馈入直流受端电网换相失败风险区域快速识别方法[J]. 中国电机工程学报, 2022, 42(1): 140-153.
LI G Q, WANG T, XIN Y C, et al.A rapid identification method for commutation failure risk area in multi-infeed high voltage direct current receiving-end power grid[J]. Proceedings of the CSEE, 2022, 42(1): 140-153.
[8] 刘俊磊, 田鹏飞, 钱峰, 等. 风电不确定性波动下的交直流输电容量优化模型[J]. 太阳能学报, 2021, 42(7): 431-436.
LIU J L, TIAN P F, QIAN F, et al.Optimization model of AC-DC transmission capacity under uncertainty fluctuation of wind power[J]. Acta energiae solaris sinica, 2021, 42(7): 431-436.
[9] 周建萍, 薛亚林, 徐征. 基于功率交互和充放速率优化的交直流混合微网控制策略研究[J]. 太阳能学报, 2018, 39(12): 3558-3567.
ZHOU J P, XUE Y L, XU Z.Research on AC/DC hybrid micro-grid control strategy based on power interaction and charge-discharge rate optimization[J]. Acta energiae solaris sinica, 2018, 39(12): 3558-3567.
[10] 孟润泉, 高晗, 魏明, 等. 电流畸变时AC/DC双向功率变换器的控制策略[J]. 太阳能学报, 2020, 41(6): 210-217.
MENG R Q, GAO H, WEI M, et al.Control strategy of AC/DC bidire ctional power converter when current distortion[J]. Acta energiae solaris sinica, 2020, 41(6): 210-217.
[11] 刘兴杰, 王凯龙, 郭栋. 含高渗透率光伏电源的配电网线路电流差动保护方案[J]. 太阳能学报, 2016, 37(7): 1805-1812.
LIU X J, WANG K L, GUO D.Current differential protection scheme for distribution feeders with high penetration of PV[J]. Acta energiae solaris sinica, 2016, 37(7): 1805-1812.
[12] LACERDA V A, MONARO R M, COURY D V.Fault distance estimation in multiterminal HVDC systems using the Lomb-Scargle periodogram[J]. Electric power systems research, 2021, 196: 107251.
[13] 徐岩, 胡紫琪, 董浩然, 等. 基于灰色综合关联度的柔性直流配电网故障定位[J]. 太阳能学报, 2023, 44(4): 324-331.
XU Y, HU Z Q, DONG H R, et al.Fault location based on comprehensive grey relational degree for flexible DC distribution network[J]. Acta energiae solaris sinica, 2023, 44(4): 324-331.
[14] 邓祥力, 陈兴霖. 基于电流故障分量时频矩阵相角差的换流变差动保护研究[J]. 电力系统保护与控制, 2021, 49(23): 44-53.
DENG X L, CHEN X L.Converter transformer differential protection based on the phase angle difference of the time-frequency matrix of a current fault component[J]. Power system protection and control, 2021, 49(23): 44-53.
[15] 魏东辉, 于舜尧, 房俊龙. 基于综合序电流的含光伏电源配电网纵联保护方案[J]. 太阳能学报, 2021, 42(7): 185-192.
WEI D H, YU S Y, FANG J L.Pilot protection scheme based on integrated sequence current for distribution metwork with photovoltatic[J]. Acta energiae solaris sinica, 2021, 42(7): 185-192.
[16] 郭晓龙, 秦文萍, 韩肖清, 等. 基于故障后电流相位的含DGs配电网故障快速方向识别算法及RTDS仿真验证[J]. 太阳能学报, 2020, 41(3): 133-139.
GUO X L, QIN W P, HAN X Q, et al.Fast direction recognition algorithm for DGs distribution network fault based on current phase after fault and RTDS simulation verification[J]. Acta energiae solaris sinica, 2020, 41(3): 133-139.
[17] 张健康, 索南加乐, 焦在滨, 等. 交直流混联电网突变量选相元件动作性能分析[J]. 电力系统自动化, 2011, 35(17): 76-80.
ZHANG J K, SUONAN J L, JIAO Z B, et al.Performance analysis of phase selector device based on fault component in AC-DC hybrid power grid[J]. Automation of electric power systems, 2011, 35(17): 76-80.
[18] 赵文远, 姚铭, 王迪. 交直流混联系统中分相电流差动保护性能分析[J]. 黑龙江电力, 2019, 41(1): 73-78.
ZHAO W Y, YAO M, WANG D.Performance analysis of split phase current differential protection in AC/DC hybrid system[J]. Heilongjiang electric power, 2019, 41(1): 73-78.
[19] 王恒. 含直流馈入的交流系统故障特性及保护新原理研究[D]. 北京: 华北电力大学, 2021.
WANG H.Research on fault characteristics and new protection principle of AC system with DC infeed[D]. Beijing: North China Electric Power University, 2021.
[20] 张健康, 索南加乐, 孙成, 等. 基于参数识别的纵联保护在交直流混联电网中的应用研究[J]. 电力系统保护与控制, 2012, 40(24): 34-39.
ZHANG J K, SUONAN J L, SUN C, et al.Application of pilot protection based on parameter identification in AC-DC hybrid grid[J]. Power system protection and control, 2012, 40(24): 34-39.
[21] 刘雨姗, 李凤婷. 直流馈入影响下交流输电线路的纵联保护方案[J]. 科学技术与工程, 2021, 21(27): 11642-11649.
LIU Y S, LI F T.Pilot protection scheme for alternating current transmission lines under the influence of direct current feed-in[J]. Science technology and engineering, 2021, 21(27): 11642-11649.
[22] 侯俊杰, 宋国兵, 徐瑞东, 等. 交直流混合电网故障耦合特性分析与继电保护研究[J]. 电力系统保护与控制, 2021, 49(14): 176-187.
HOU J J, SONG G B, XU R D, et al.Fault coupling characteristic analysis and relay protection research on an AC/DC hybrid power grid[J]. Power system protection and control, 2021, 49(14): 176-187.
[23] 申洪明, 黄少锋, 费彬. 交直流互联系统对电流差动保护的影响分析及对策[J]. 华北电力大学学报(自然科学版), 2014, 41(4): 1-6, 29.
SHEN H M, HUANG S F, FEI B.Analysis on the effect of AC/DC interconnected system on the current differential protection and the countermeasure[J]. Journal of North China Electric Power University (natural science edition), 2014, 41(4): 1-6, 29.
[24] GAO W, HE W X, WAI R J, et al.High-impedance arc fault modeling for distribution networks based on dynamic geometry dimension[J]. Electric power systems research, 2024, 229:64-80.
[25] 崔笑菲. 交直流互联电网中交流保护优化研究[D]. 北京: 华北电力大学, 2019.
CUI X F.Research on improvement of AC line protection in AC-DC compound power grid[D]. Beijing: North China Electric Power University, 2019.
[26] 张璞, 王钢, 李海锋, 等. 直流馈入下的输电线路电流差动保护动作特性分析[J]. 电力系统保护与控制, 2010, 38(10): 1-5.
ZHANG P, WANG G, LI H F, et al.Performance of current differential protection for transmission lines in HVDC/AC interconnected system[J]. Power system protection and control, 2010, 38(10): 1-5.
[27] 宋国兵, 索南加乐, 许庆强, 等. 基于双回线环流的时域法故障定位[J]. 中国电机工程学报, 2004, 24(3): 24-29.
SONG G B, SUO N J L, XU Q Q, et al. A novel time-domain algorithm for locating faults on parallel transmission lines by circulating circuit[J]. Proceedings of the CSEE, 2004, 24(3): 24-29.
[28] 龚光彩, 李柏霖, 周富玉, 等. 基于PID-二分组合控制算法的分布参数空气源热泵仿真模型的研究[J]. 太阳能学报, 2022, 43(7): 16-21.
GONG G C, LI B L, ZHOU F Y, et al.Research on simulation model of distributed parameter air source heat pump based on PID-bisection combination control algorithm[J]. Acta energiae solaris sinica, 2022, 43(7): 16-21.
[29] 高淑萍, 索南加乐, 宋国兵, 等. 基于分布参数模型的直流输电线路故障测距方法[J]. 中国电机工程学报, 2010, 30(13): 75-80.
GAO S P, SUONAN J L, SONG G B, et al.Fault location method for HVDC transmission lines on the basis of the distributed parameter model[J]. Proceedings of the CSEE, 2010, 30(13): 75-80.
[30] 盖宝, 潘再平. 基于Park变换的线路阻抗参数在线辨识新方法[J]. 太阳能学报, 2018, 39(6): 1735-1742.
GAI B, PAN Z P.Novel method of online identification of line impedance parameter based on Park transformation[J]. Acta energiae solaris sinica, 2018, 39(6): 1735-1742.
[31] 邵庆祝, 赵晓东, 赵创业, 等. 基于高压直流输电线路分布参数模型的模态电流差动保护算法[J]. 电力系统保护与控制, 2021, 49(22): 171-179.
SHAO Q Z, ZHAO X D, ZHAO C Y, et al.Modal current differential protection method based on distributed parameter model of an HVDC transmission line[J]. Power system protection and control, 2021, 49(22): 171-179.
[32] 宋国兵, 高校平, 张晨浩, 等. 海上风电低频输电系统快速母线保护[J]. 电力系统自动化, 2024, 48(2): 29-36.
SONG G B, GAO X P, ZHANG C H, et al.Fast busbar protection for low-frequency transmission system of offshore wind power[J]. Automation of electric power systems, 2024, 48(2): 29-36.
[33] 王童辉, 贾科, 毕天姝, 等. 基于动态相量理论的高压直流系统换相失败暂态特性[J]. 电力系统自动化, 2018, 42(23): 78-85.
WANG T H, JIA K, BI T S, et al.Transient characteristics of commutation failure of HVDC system based on dynamic phasor theory[J]. Automation of electric power systems, 2018, 42(23): 78-85.
[34] 杨子荷, 李永丽, 宋金钊, 等. 直流馈入下交流系统故障特性分析及故障分量电流差动保护改进[J]. 电力自动化设备, 2019, 39(9): 3-10.
YANG Z H, LI Y L, SONG J Z, et al.Fault characteristics analysis and fault component current differential protection improvement of AC system with infeed DC[J]. Electric power automation equipment, 2019, 39(9): 3-10.
PDF(1722 KB)

Accesses

Citation

Detail

Sections
Recommended

/