FAULT IDENTIFICATION METHOD FOR WIND FARM COLLECTING LINES BASED ON DOUBLE DECISION THEORY

Gao Xing, Wang Xiaodong, Liu Yingming

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 531-538.

PDF(4787 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4787 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 531-538. DOI: 10.19912/j.0254-0096.tynxb.2024-0113

FAULT IDENTIFICATION METHOD FOR WIND FARM COLLECTING LINES BASED ON DOUBLE DECISION THEORY

  • Gao Xing, Wang Xiaodong, Liu Yingming
Author information +
History +

Abstract

A fault identification method for wind farm collecting lines based on the dual decision idea is proposed to address the issue of trade-off between identification accuracy and the mamberof measurement points caused by the multi branch structure of wind farms. This method is used to identify wind farm fault branches and their types in wind farms. Consider the unique tree like multi branch structure of wind farms for dividing fault collection lines. The upper-level decision is used to determine the collection line where the wind farm fails, while the lower level decision further facilitates fault branch identification and fault classification. The upper level decision-making is based on the concept of energy similarity to identify faulty collector lines, establish a fault decision matrix, narrow down the fault range, and does require manual threshold setting. The lower level decision-making is based on time-frequency response feature fusion to identify the fault branches and types in wind farms. A fault feature fusion matrix is established based on the characteristic state matrix of each phase at the dual end measurement points of the collection line to reduce the need for measurement points. This method only requires a small amount of measurement point data in the wind farm to achieve fault identification of multi branch structures in the wind farm, taking into account the effects of fault resistance, starting angle, fault location, and noise.

Key words

wind farms / convolutional neural networks / short circuit current / fault identification / fault classification

Cite this article

Download Citations
Gao Xing, Wang Xiaodong, Liu Yingming. FAULT IDENTIFICATION METHOD FOR WIND FARM COLLECTING LINES BASED ON DOUBLE DECISION THEORY[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 531-538 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0113

References

[1] 薛翼程, 张哲任, 徐政. 适用于短路故障分析的风电场动态等值建模方法[J]. 太阳能学报, 2022, 43(5): 327-335.
XUE Y C, ZHANG Z R, XU Z.Dynamic equivalent model of wind farm for short-circuit faults analysis[J]. Acta energiae solaris sinica, 2022, 43(5): 327-335.
[2] 朱永利, 丁嘉, 潘新朋. 基于零序分量的风电场集电线不对称接地故障定位[J]. 电力系统保护与控制, 2023, 51(3): 56-67.
ZHU Y L, DING J, PAN X P.Zero-sequence component-based fault localization for asymmetric phase-to-ground faults of collecting lines in wind farms[J]. Power system protection and control, 2023, 51(3): 56-67.
[3] 王晓东, 王永浩, 刘颖明, 等. 海上风电场集电多分支线路故障区段定位方法[J]. 太阳能学报, 2023, 44(1): 163-170.
WANG X D, WANG Y H, LIU Y M, et al.Fault branch location for multi-branch collection lines of offshore wind farm[J]. Acta energiae solaris sinica, 2023, 44(1): 163-170.
[4] 邓丰, 梅龙军, 唐欣, 等. 基于时频域行波全景波形的配电网故障选线方法[J]. 电工技术学报, 2021, 36(13): 2861-2870.
DENG F, MEI L J, TANG X, et al.Faulty line selection method of distribution network based on time-frequency traveling wave panoramic waveform[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2861-2870.
[5] 刘晓琴, 王大志, 江雪晨, 等. 利用行波到达时差关系的配电网故障定位算法[J]. 中国电机工程学报, 2017, 37(14): 4109-4115.
LIU X Q, WANG D Z, JIANG X C, et al.Fault location algorithm for distribution power network based on relationship in time difference of arrival of traveling wave[J]. Proceedings of the CSEE, 2017, 37(14): 4109-4115.
[6] 张科, 孙立志, 朱永利, 等. 基于矢量偏离度的风电场集电线路故障定位方法[J]. 电力系统自动化, 2019, 43(10): 127-133.
ZHANG K, SUN L Z, ZHU Y L, et al.Fault location method of wind farm collection line based on vector deviation degree[J]. Automation of electric power systems, 2019, 43(10): 127-133.
[7] 王宾, 任萱. 中性点经小电阻接地风电场集电线路单相接地故障测距研究[J]. 中国电机工程学报, 2021, 41(6): 2136-2143, 20.
WANG B, REN X.Single-line-to-ground fault location in wind farm collection line with neutral point grounding with resistor[J]. Proceedings of the CSEE, 2021, 41(6): 2136-2143, 20.
[8] 丁嘉, 朱永利. 图学习与零序分量相结合的风电场集电线单相接地故障定位[J]. 电工技术学报, 2023, 38(17): 4701-4714.
DING J, ZHU Y L.A fault localization scheme for single-phase-to-ground faults on collecting lines in wind farms combining graph learning and zero-sequence components[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4701-4714.
[9] 田鹏飞, 于游, 董明, 等. 基于CNN-SVM的高压输电线路故障识别方法[J]. 电力系统保护与控制, 2022, 50(13): 119-125.
TIAN P, YU Y, DONG M, et al.A CNN-SVM-based fault identification method for high-voltage transmission lines[J]. Power system protection and control, 2022, 50(13): 119-125.
[10] 徐舒玮, 邱才明, 张东霞, 等. 基于深度学习的输电线路故障类型辨识[J]. 中国电机工程学报, 2019, 39(1): 65-74.
XU S W, QIU C M, ZHANG D X, et al.A deep learning approach for fault type identification of transmission line[J]. Proceedings of the CSEE, 2019, 39(1): 65-74.
[11] WANG X D, GAO X, LIU Y M, et al.Stockwell-transform and random-forest based double-terminal fault diagnosis method for offshore wind farm transmission line[J]. IET renewable power generation, 2021, 15(11): 2368-2382.
[12] 彭华, 朱永利. 基于apFFT频谱校正和XGBoost的风电场集电线路单相接地故障测距[J]. 电工技术学报, 2020, 35(23): 4931-4939.
PENG H, ZHU Y L.Single phase grounding fault location for power lines of wind farm based on apFFT spectrum correction and XGBoost algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4931-4939.
[13] 李宇, 杨柳林. 基于卷积神经网络的配电网单相接地故障识别[J]. 电气工程学报, 2020, 15(3): 22-30.
LI Y, YANG L L.Identification of single-phase-to-earth fault in distribution network based on convolutional neural network[J]. Journal of electrical engineering, 2020, 15(3): 22-30.
PDF(4787 KB)

Accesses

Citation

Detail

Sections
Recommended

/