ONLINE PREDICTION OF ROTOR WIND SPEED BASED ON LIDAR

Chen Bowen, Feng Xiangheng, Lin Yonggang, Gu Yajing, Liu Hongwei, Sun Yong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 539-546.

PDF(1783 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1783 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 539-546. DOI: 10.19912/j.0254-0096.tynxb.2024-0114

ONLINE PREDICTION OF ROTOR WIND SPEED BASED ON LIDAR

  • Chen Bowen1, Feng Xiangheng1,2, Lin Yonggang1, Gu Yajing1, Liu Hongwei1, Sun Yong2
Author information +
History +

Abstract

Leveraging advanced LIDAR-based wind speed measurements ahead of the wind turbine, this paper proposes a plane wind speed time-delay processing algorithm to achieve ultra-short-term online wind speed prediction for the rotor plane. The proposed wind speed prediction method is validated using actual wind speed data from a wind farm, demonstrating a 17% improvement in prediction accuracy compared to the traditional Taylor frozen method. Furthermore, the equivalent wind speed in the rotor plane, calculated using the modified wind speed prediction model exhibits a high correlation with the turbine’s operational data, with a correlation coefficient exceeding 0.9, confirming the accuracy of the proposed plane wind speed prediction method.

Key words

wind turbines / lidar / wind speed evolution / plane wind speed / equivalent wind speed

Cite this article

Download Citations
Chen Bowen, Feng Xiangheng, Lin Yonggang, Gu Yajing, Liu Hongwei, Sun Yong. ONLINE PREDICTION OF ROTOR WIND SPEED BASED ON LIDAR[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 539-546 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0114

References

[1] 刘平, 张媛, 莫堃, 等. 风力发电设备技术现状与发展趋势[J]. 中国重型装备, 2022(4): 1-6.
LIU P, ZHANG Y, MO K, et al.Current situation and development trend of wind power generation equipment technology[J]. China heavy equipment, 2022(4): 1-6.
[2] MIKKELSEN T.Lidar-based research and innovation at DTU wind energy-a review[J]. Journal of physics: conference series, 2014, 524: 012007.
[3] GIYANANI A, BIERBOOMS W M, VAN BUSSEL G W. Estimation of rotor effective wind speeds using autoregressive models on Lidar data[J]. Journal of physics: conference series, 2016, 753: 072018.
[4] TOWERS P, JONES B L.Real-time wind field reconstruction from LiDAR measurements using a dynamic wind model and state estimation[J]. Wind energy, 2016, 19(1): 133-150.
[5] KÜLÜM E, GENÇ M S, KARAGÖZ F. Evaluation of wind measurement methods for determination of realistic wind shear: a case study in Aksaray, Turkey[J]. Flow measurement and instrumentation, 2023, 93: 102408.
[6] BORRACCINO A, SCHLIPF D, HAIZMANN F, et al.Wind field reconstruction from nacelle-mounted lidars shortrange measurements[J]. Windenergy science discussions, 2017: 1-23.
[7] ZHAN L, LETIZIA S, VALERIO IUNGO G.LiDAR measurements for an onshore wind farm: wake variability for different incoming wind speeds and atmospheric stability regimes[J]. Wind energy, 2020, 23(3): 501-527.
[8] HAN B, ZHOU L W, ZHANG Z W.LIDAR-assisted radial basis function neural network optimization for wind turbines[J]. IEEJ transactions on electrical and electronic engineering, 2018, 13(2): 195-200.
[9] ZHANG B J, LIN Y G, CHEN W T, et al.Novel rotor effective wind speed estimation method for light detection and ranging application[J]. Proceedings of the Institution of Civil Engineers: energy, 2022, 175(4): 177-194.
[10] WANG X, ZHOU J S, QIN B, et al.Individual pitch control of wind turbines based on SVM load estimation and LIDAR measurement[J]. IEEE access, 2021, 9: 143913-143921.
[11] 朱金阳, 丁伟. 平坦地形风剪切特性的研究[J]. 太阳能学报, 2023, 44(2): 167-171.
ZHU J Y, DING W.Research of wind shear characteristics in flat terrain[J]. Acta energiae solaris sinica, 2023, 44(2): 167-171.
[12] UCHIDA T, TANIYAMA Y, FUKATANI Y, et al.A new wind turbine CFD modeling method based on a porous disk approach for practical wind farm design[J]. Energies, 2020, 13(12): 3197.
[13] 陈文婷, 张铂炅, 林勇刚, 等. 基于激光雷达的风力机分离测风独立变桨控制策略[J]. 太阳能学报, 2022, 43(2): 415-423.
CHEN W T, ZHANG B J, LIN Y G, et al.Separated wind measurement individual pitch control of wind turbine based on lidar[J]. Acta energiae solaris sinica, 2022, 43(2): 415-423.
[14] TIAN W, PAN W X, SHAO Y X, et al.Individual pitch control strategy for reducing aerodynamic loads and torque ripples[J]. IEEJ transactions on electrical and electronic engineering, 2019, 14(11): 1624-1632.
[15] 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014.
TIAN L L.Numerical simulation of wind turbine wakes and the study of wind farm layout optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[16] 姜婷婷, 叶杭冶, 申新贺, 等. 基于风轮面等效风速的风电场发电量评估方法研究[J]. 太阳能学报, 2021, 42(9): 244-249.
JIANG T T, YE H Y, SHEN X H, et al.Research on wind farm power generation assessment based on rotor equivalent wind speed[J]. Acta energiae solaris sinica, 2021, 42(9): 244-249.
[17] VAN SARK W G J H M, VAN DER VELDE H C, COELINGH J P, et al. Do we really need rotor equivalent wind speed?[J]. Wind energy, 2019, 22(6): 745-763.
[18] IEC 61400-12-1, Wind turbines—part 12-1, international electrotechnical commission[S].
[19] MEDICI D, IVANELL S, DAHLBERG J Å, et al.The upstream flow of a wind turbine: blockage effect[J]. Wind energy, 2011, 14(5): 691-697.
[20] 田德, 周臣凯, 唐世泽, 等. 基于自适应模型预测控制的大型风电机组MPPT方法[J]. 太阳能学报, 2023, 44(6): 501-508.
TIAN D, ZHOU C K, TANG S Z, et al.MPPT method for large wind turbines based on adaptive model predictive control[J]. Acta energiae solaris sinica, 2023, 44(6): 501-508.
PDF(1783 KB)

Accesses

Citation

Detail

Sections
Recommended

/