RESEARCH ON DC SERIES ARC POSITIONING METHOD OF PHOTOVOLTAIC POWER STATION BASED ON HIGH-FREQUENCY DISTRIBUTED PARAMETERS

Wang Yongqing, Zhang Danshi, Wang Peng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 331-337.

PDF(1791 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1791 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 331-337. DOI: 10.19912/j.0254-0096.tynxb.2024-0122

RESEARCH ON DC SERIES ARC POSITIONING METHOD OF PHOTOVOLTAIC POWER STATION BASED ON HIGH-FREQUENCY DISTRIBUTED PARAMETERS

  • Wang Yongqing1, Zhang Danshi1, Wang Peng2
Author information +
History +

Abstract

To address the high fire risk and difficulty in locating series DC arc faults in photovoltaic systems, a method is proposed based on the influence of high-frequency distributed parameters in the process of DC arc transmission. The experimental platform is built to establish the relationship between resonance frequency and fault distance in the frequency domain, establish the relationship between decay time and distance in the time domain, take the time domain, and make the average value of the frequency domain positioning result as the final result. The method is validated by simulations and building experimental circuits on the Simulink platform. The results show that the proposed positioning method is feasible, and the error of the arc fault positioning does not exceed 5%.

Key words

photovoltaic power plants / electric arcs / frequency domain analysis / electric fault location / resonance oscillation / energy attenuation

Cite this article

Download Citations
Wang Yongqing, Zhang Danshi, Wang Peng. RESEARCH ON DC SERIES ARC POSITIONING METHOD OF PHOTOVOLTAIC POWER STATION BASED ON HIGH-FREQUENCY DISTRIBUTED PARAMETERS[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 331-337 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0122

References

[1] UL 1699B, Standard for photovoltaic (PV) DC arc-fault circuit protection[S].
[2] 吴春华, 胡雅, 李智华, 等. 基于SSTDR的光伏系统直流母线电弧故障在线检测与定位[J]. 中国电机工程学报, 2020, 40(8): 2725-2734.
WU C H, HU Y, LI Z H, et al.On-line detection and location of DC bus arc faults in PV systems based on SSTDR[J]. Proceedings of the CSEE, 2020, 40(8): 2725-2734.
[3] 唐海龙, 熊兰, 吴淑牛, 等. 光伏系统直流母线电弧故障的固有频率法测距[J]. 太阳能学报, 2022, 43(9): 30-37.
TANG H L, XIONG L, WU S N, et al.Locating arc fault of DC bus in photovoltaic system by natural frequency method[J]. Acta energiae solaris sinica, 2022, 43(9): 30-37.
[4] 熊庆, 刘小军, 郭自清, 等. 基于电流频谱积分差值的光伏系统电弧故障检测和定位[J]. 高电压技术, 2021, 47(5): 1625-1633.
XIONG Q, LIU X J, GUO Z Q, et al.Arc fault detection and localization for photovoltaic system based on spectrum integration difference of currents[J]. High voltage engineering, 2021, 47(5): 1625-1633.
[5] 李智华, 钟杰人, 吴春华, 等. 光伏电站中故障电弧信号的传输行为研究[J]. 太阳能学报, 2021, 42(7): 152-160.
LI Z H, ZHONG J R, WU C H, et al.Study on transmission behavior of fault arc signal in photovoltaic power plant[J]. Acta energiae solaris sinica, 2021, 42(7): 152-160.
[6] 胡继新, 许永新, 耿镱诚, 等. 基于多特征融合的光伏系统串联直流电弧故障识别方法[J]. 现代电力, 2022, 39(5): 529-536.
HU J X, XU Y X, GENG Y C, et al.A multi-feature fusion-based method to recognize series DC arc fault in photovoltaic system[J]. Modern electric power, 2022, 39(5): 529-536.
[7] 潘学萍, 张源, 鞠平, 等. 太阳能光伏电站等效建模[J]. 电网技术, 2015, 39(5): 1173-1178.
PAN X P, ZHANG Y, JU P, et al.Equivalent modeling for photovoltaic power station[J]. Power system technology, 2015, 39(5): 1173-1178.
[8] 赵凯华, 陈熙谋. 电磁学[M]. 4版. 北京: 高等教育出版社, 2018: 352-368.
ZHAO K H, CHEN X M.Electromagnetics[M]. Beijing: Higher Education Press, 2018: 352-368.
[9] 李斌, 毛琦扬, 何佳伟, 等. 基于重合直流断路器残余电流开关的柔性直流电网故障测距[J]. 电力系统自动化, 2021, 45(10): 140-148.
LI B, MAO Q Y, HE J W, et al.Fault location for flexible DC grid based on reclosing residual current breaker of DC circuit breaker[J]. Automation of electric power systems, 2021, 45(10): 140-148.
[10] 唐海龙. 低压直流配电网线缆电弧故障检测与测距方法研究[D]. 重庆: 重庆大学, 2022.
TANG H L.Research on cable arc fault detection and location method in low voltage DC distribution network[D]. Chongqing: Chongqing University, 2022.
[11] 彭亚斌, 董俊杰. 基于等效电感的高压线路高频融冰方法研究[J]. 电工技术, 2023(11): 172-176, 181.
PENG Y B, DONG J J.Research on high-frequency ice melting method for high-voltage lines based on equivalent inductance[J]. Electric engineering, 2023(11): 172-176, 181.
[12] 王琦, 赵启明, 袁建生. 长直平行双导线电感传统计算方法误差分析与修正[J]. 电线电缆, 2017(6): 1-4, 40.
WANG Q, ZHAO Q M, YUAN J S.Error analysis and correction of traditional method for long straight parallel double-conductor circuit’s inductance value calculation[J]. Wire & cable, 2017(6): 1-4, 40.
[13] ZHANG J, CHEN W J, ZHANG B, et al.Optimal design of EMI filters for PV system based on parasitic parameter and stability analysis[C]//2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia). Seoul, Korea, 2015: 2744-2751.
[14] 李翔, 马超群, 董伟, 等. 光伏组件分布电容的建模与分析[J]. 半导体技术, 2014, 39(8): 633-637.
LI X, MA C Q, DONG W, et al.Modeling and analysis of the photovoltaic module distributed capacitance[J]. Semiconductor technology, 2014, 39(8): 633-637.
[15] 於少林. 中大功率光伏系统共性结构寄生参数分析[D]. 合肥: 合肥工业大学, 2018.
YU S L.Analysis of parasitic parameters of common structure in medium and high power photovoltaic systems[D]. Hefei: Hefei University of Technology, 2018.
[16] YU S L, WANG J N, ZHANG X, et al.Complete parasitic capacitance model of photovoltaic panel considering the rain water[J]. Chinese journal of electrical engineering, 2017, 3(3): 77-84.
[17] Jiangsu Green Power New Energy. GPNE-P60 290-270W-ENF[EB/OL].https://cdn.enf.com.cn/Product/pdf/Crystalline/5e941bcd4f73d.pdf.
[18] 吴春华, 闫俊驰, 李智华. 光伏系统故障电弧检测技术综述[J]. 电源技术, 2014, 38(9): 1768-1770, 1776.
WU C H, YAN J C, LI Z H.Summary of DC arc fault detection technique of PV system[J]. Chinese journal of power sources, 2014, 38(9): 1768-1770, 1776.
[19] GB/T 39750—2021, 光伏发电系统直流电弧保护技术要求[S].
GB/T 39750—2021, Technology requirements of DC arc-fault circuit protection for photovoltaic power system[S].
PDF(1791 KB)

Accesses

Citation

Detail

Sections
Recommended

/