PHOTOVOLTAIC ADAPTIVE POWER PREDICTION MODEL BASED ON METEOROLOGICAL DATA EXTRAPOLATION AND SIGNIFICANCE ANALYSIS

Wang Lijie, Zhang Qingshan, Hao Ying, Zhou Ying, Qiu Min, Sun Chong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 317-325.

PDF(1676 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1676 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (2) : 317-325. DOI: 10.19912/j.0254-0096.tynxb.2024-0132

PHOTOVOLTAIC ADAPTIVE POWER PREDICTION MODEL BASED ON METEOROLOGICAL DATA EXTRAPOLATION AND SIGNIFICANCE ANALYSIS

  • Wang Lijie1, Zhang Qingshan1, Hao Ying2, Zhou Ying3, Qiu Min3, Sun Chong4
Author information +
History +

Abstract

Distributed photovoltaic power stations typically possess a relatively small installed capacity and generally do not conduct real-time power statistics, posing challenges to directly establish power prediction models. This paper proposes an adaptive power prediction model based on meteorological data extrapolation and significance analysis aiming at the diversity of installation models and methods for photovoltaic panels in distributed photovoltaic power stations. Firstly, significance analysis is conducted on the nominal parameters of the photovoltaic panel and the characteristic parameters in the meteorological data extrapolation method to determine the set of nominal parameters. Then, establish a least squares support vector machine model to fit the adaptive function relationship between the nominal parameter set and the feature parameters. Finally, an adaptive power prediction model is established, which converts the ambient temperature and irradiance into the temperature and irradiance of the panel based on the installation mode of photovoltaic panels, selects the characteristic parameters suitable for the current photovoltaic cell model based on the adaptive function, and inputs the meteorological data extrapolation method to obtain the predicted power. The research results indicate that the adaptive power prediction model can adaptively select appropriate feature parameters for different ty

Key words

photovoltaic power generation / power forecasting / extrapolation / significance analysis / adaptive function

Cite this article

Download Citations
Wang Lijie, Zhang Qingshan, Hao Ying, Zhou Ying, Qiu Min, Sun Chong. PHOTOVOLTAIC ADAPTIVE POWER PREDICTION MODEL BASED ON METEOROLOGICAL DATA EXTRAPOLATION AND SIGNIFICANCE ANALYSIS[J]. Acta Energiae Solaris Sinica. 2025, 46(2): 317-325 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0132

References

[1] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[2] 陈元峰, 马溪原, 程凯, 等. 基于气象特征量选取与SVM模型参数优化的新能源超短期功率预测[J]. 太阳能学报, 2023, 44(12): 568-576.
CHEN Y F, MA X Y, CHENG K, et al.Ultra-short-term power forecast of new energy based on meteorological feature selection and SVM model parameter optimization[J]. Acta energiae solaris sinica, 2023, 44(12): 568-576.
[3] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[4] 吴小涛, 袁晓辉, 袁艳斌, 等. 基于二阶数据分解算法和蝗虫优化混合核LSSVM的太阳辐照度预测模型研究[J]. 可再生能源, 2021, 39(7): 899-907.
WU X T, YUAN X H, YUAN Y B, et al.Solar irradiance prediction model based on two-stage data decomposition algorithm and hybrid kernel LSSVM optimized by grasshopper optimization algorithm[J]. Renewable energy resources, 2021, 39(7): 899-907.
[5] RILEY D M, VENAYAGAMOORTHY G K.Characterization and modeling of a grid-connected photovoltaic system using a recurrent neural network[C]//The 2011 International Joint Conference on Neural Networks. San Jose, CA, USA, 2011: 1761-1766.
[6] NGUYEN D D, LEHMAN B, KAMARTHI S.Performance evaluation of solar photovoltaic arrays including shadow effects using neural network[C]//2009 IEEE Energy Conversion Congress and Exposition. San Jose, CA, 2009: 3357-3362.
[7] 苏建徽, 余世杰, 赵为, 等. 硅太阳电池工程用数学模型[J]. 太阳能学报, 2001, 22(4): 409-412.
SU J H, YU S J, ZHAO W, et al.Investigation on engineering analytical model of silicon solar cells[J]. Acta energiae solaris sinica, 2001, 22(4): 409-412.
[8] 傅望, 周林, 郭珂, 等. 光伏电池工程用数学模型研究[J]. 电工技术学报, 2011, 26(10): 211-216.
FU W, ZHOU L, GUO K, et al.Research on engineering analytical model of solar cells[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 211-216.
[9] 彭湃, 程汉湘, 陈杏灿, 等. 光伏电池工程用数学模型及其模型的应用研究[J]. 电源技术, 2017, 41(5): 780-782, 789.
PENG P, CHENG H X, CHEN X C, et al.Engineering analytical model of photovoltaic cell and its application research[J]. Chinese journal of power sources, 2017, 41(5): 780-782, 789.
[10] 杨娜. 国电内蒙古察右前旗光伏电站的出力预测研究[D]. 北京: 华北电力大学, 2016.
YANG N.Prediction of the output of Guodian Inner Mongolia Chayouqianqi photovoltaic power plant[D]. Beijing: North China Electric Power University, 2016.
[11] 李恩茂. 10 MW光伏发电项目设计[D]. 大连: 大连海事大学, 2019.
LI E M.Design of 10 MW photovoltaic power generation project[D]. Dalian: Dalian Maritime University, 2019.
[12] DREWS A, DE KEIZER A C, BEYER H G, et al. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations[J]. Solar energy, 2007, 81(4): 548-564.
[13] LORENZ E, SCHEIDSTEGER T, HURKA J, et al.Regional PV power prediction for improved grid integration[J]. Progress in photovoltaics: research and applications, 2011, 19(7): 757-771.
[14] 国家能源局. 光伏电站消纳监测统计管理办法[EB/OL].(2021-12-3). http://zfxxgk.nea.gov.cn/2021-12/03/c_1310383862. htm.
National Energy Administration. Management measures for consumption monitoring and statistics of photovoltaic power stations[EB/OL]. (2021-12-3). http://zfxxgk.nea.gov.cn/2021-12/03/c_1310383862.htm.
[15] 陈祥. 基于机理模型的并网光伏电站实时效率分析[J]. 太阳能, 2011(17): 12-14, 49.
CHEN X.Real-time efficiency analysis of grid-connected photovoltaic power station based on mechanism model[J]. Solar energy, 2011(17): 12-14, 49.
[16] 张峻岭, 殷建英, 王文军. 鄂尔多斯新能源产业示范区的风光互补最优容量匹配[J]. 电力与能源, 2011, 32(3): 224-227.
ZHANG J L, YIN J Y, WANG W J.Optimal capacity for the complementation of wind-solar power located in Ordos new energy demonstration zone[J]. Power & energy, 2011, 32(3): 224-227.
[17] 张雪莉, 刘其辉, 马会萌, 等. 光伏电站输出功率影响因素分析[J]. 电网与清洁能源, 2012, 28(5): 75-81.
ZHANG X L, LIU Q H, MA H M, et al.Analysis of influencing factors of output power of photovoltaic power plant[J]. Power system and clean energy, 2012, 28(5): 75-81.
[18] 王利珍, 谭洪卫, 庄智, 等. 基于GIS平台的我国太阳能光伏发电潜力研究[J]. 上海理工大学学报, 2014, 36(5): 491-496.
WANG L Z, TAN H W, ZHUANG Z, et al.Evaluation of the photovoltaic solar energy potential in China based on GIS platform[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5): 491-496.
[19] 田佳垚, 冯自平, 胡亚飞, 等. 基于多元回归模型的燃气热泵系统制热性能分析[J]. 热能动力工程, 2023, 38(6): 129-136.
TIAN J Y, FENG Z P, HU Y F, et al.Analysis of heating performance of gas engine-driven heat pump system based on multiple regression model[J]. Journal of engineering for thermal energy and power, 2023, 38(6): 129-136.
[20] 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48(8): 3271-3281.
ZHANG Q S, WANG L J, HAO Y, et al.Ultra-short-term solar irradiance prediction of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High voltage engineering, 2022, 48(8): 3271-3281.
PDF(1676 KB)

Accesses

Citation

Detail

Sections
Recommended

/