THREE-DIMENSIONAL MULTIPHASE MODEL OF AIRFOIL CROSS FLOW FIELD OF PROTON EXCHANGE MEMBRANE FUEL CELL ON CATHODE SIDE

Liu Qiang, Cheng Tiancai, Mu Dongming, Yang Chengze, Wang Pengkai

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 58-65.

PDF(2019 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2019 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (4) : 58-65. DOI: 10.19912/j.0254-0096.tynxb.2024-0137

THREE-DIMENSIONAL MULTIPHASE MODEL OF AIRFOIL CROSS FLOW FIELD OF PROTON EXCHANGE MEMBRANE FUEL CELL ON CATHODE SIDE

  • Liu Qiang, Cheng Tiancai, Mu Dongming, Yang Chengze, Wang Pengkai
Author information +
History +

Abstract

Based on the inspiration of low flow resistance of aircraft airfoil, a new type of airfoil cross flow field (ACFF) is proposed. Firstly, the geometry of the ACFF is optimized through the utilization of orthogonal tests, to determine the combination of optimal geometric parameters and levels. Subsequently, the impact of the optimized ACFF (ACFF-49) on the output performance of the PEMFC is investigated through the implementation of a three-dimensional numerical analysis method. Finally, the net power density of the cell as a performance metric, is employed to assess the equilibrium between the pressure drop and the effective power within the flow field. The findings demonstrate that the ACFF exhibits enhanced mass transfer proficiency and diminished pumping power loss. Furthermore, the pressure and temperature distributions at the interface of the gas diffusion layer (GDL) and the catalyst layer (CL) are found to be uniform. Additionally, by enhancing the homogeneity of temperature, pressure, and oxygen mass fraction distributions, the probability of local hot spots and water flooding in the PEMFC is diminished.

Key words

PEMFC / hydrothermal management / numerical simulation / orthogonal test / airfoil cross flow field

Cite this article

Download Citations
Liu Qiang, Cheng Tiancai, Mu Dongming, Yang Chengze, Wang Pengkai. THREE-DIMENSIONAL MULTIPHASE MODEL OF AIRFOIL CROSS FLOW FIELD OF PROTON EXCHANGE MEMBRANE FUEL CELL ON CATHODE SIDE[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 58-65 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0137

References

[1] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(8): 62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of PEMFC[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[2] 王万腾, 李楠, 许宏鹏, 等. 基于鹦鹉螺仿生结构的流道对PEMFC性能提升研究[J]. 太阳能学报, 2022, 43(6): 448-453.
WANG W T, LI N, XU H P, et al.Study on improving performance of PEMFC by flow channel based on nautilus bionic structure[J]. Acta energiae solaris sinica, 2022, 43(6): 448-453.
[3] CHENG T C, LIU Q, JIANG G J, et al.The impact of baffle and taper channel tilt angle on the output performance of proton-exchange membrane fuel cells[J]. Fuel cells, 2024, 24(1): 32-48.
[4] 周伟, 朱鑫宁, 连云崧, 等. 质子交换膜燃料电池的三维流场技术研究进展[J]. 机械工程学报, 2021, 57(8): 2-12.
ZHOU W, ZHU X N, LIAN Y S, et al.Research progress on three-dimensional flow field technology of proton exchange membrane fuel cell[J]. Journal of mechanical engineering, 2021, 57(8): 2-12.
[5] SUBRAMANIAM S, RAJARAM G, PALANISWAMY K, et al.Comparison of perforated and serpentine flow fields on the performance of proton exchange membrane fuel cell[J]. Journal of the energy institute, 2017, 90(3): 363-371.
[6] DANG D K, ZHOU B.Effects of pin shapes on gas-liquid transport behaviors in PEMFC cathode[J]. Journal of power sources, 2023, 557: 232584.
[7] 陈吉清, 曾常菁, 周云郊, 等. 质子交换膜燃料电池五边形挡板流场结构优化与性能改进[J]. 汽车工程, 2023, 45(10): 1862-1875.
CHEN J Q, ZENG C J, ZHOU Y J, et al.Flow field structure optimization and performance improvement with pentagon baffle for proton exchange membrane fuel cell[J]. Automotive engineering, 2023, 45(10): 1862-1875.
[8] ATYABI S A, AFSHARI E.Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side[J]. Journal of cleaner production, 2019, 214: 738-748.
[9] GUO N N, LEU M C, KOYLU U O.Network based optimization model for pin-type flow field of polymer electrolyte membrane fuel cell[J]. International journal of hydrogen energy, 2013, 38(16): 6750-6761.
[10] PERNG S W, WU H W.A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC[J]. Applied energy, 2015, 143: 81-95.
[11] WANG B W, CHEN W M, PAN F W, et al.A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell[J]. Journal of power sources, 2019, 434: 226741.
[12] ZHANG Z H, WANG C H, CHEN C D, et al.Optimal design of locally improved structure for enhancing mass transfer in PEMFC cathode flow field[J]. International journal of hydrogen energy, 2024, 57: 798-811.
[13] GARDINER W P, GETTINBY G.Experimental design techniques in statistical practice[M]. Amsterdam: Elsevier,1998: 289-321.
[14] LIU S J.Bioprocess engineering[M]. Amsterdam: Elsevier, 2020: 885-933.
[15] WILSON G.Six sigma and the product development cycle[M].Amsterdam: Elsevier, 2005: 107-178.
[16] ZHANG G B, FAN L H, SUN J, et al.A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties[J]. International journal of heat and mass transfer, 2017, 115: 714-724.
[17] FAN L H, NIU Z Q, ZHANG G B, et al.Optimization design of the cathode flow channel for proton exchange membrane fuel cells[J]. Energy conversion and management, 2018, 171: 1813-1821.
[18] ZUO Q S, LI Q M, CHEN W, et al.Optimization of blocked flow field performance of proton exchange membrane fuel cell with auxiliary channels[J]. International journal of hydrogen energy, 2022, 47(94): 39943-39960.
PDF(2019 KB)

Accesses

Citation

Detail

Sections
Recommended

/