ULTRA-SHORT-TERM FORECASTING MODEL OF PHOTOVOLTAIC POWER BASED ON IMPROVED EMOTIONAL NEURAL NETWORK USING BO-SVM AND ISO

Wang Yufei, Wang Xianzhe, Xue Hua, Yu Guangzheng, Yang Xiu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 280-288.

PDF(3196 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3196 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 280-288. DOI: 10.19912/j.0254-0096.tynxb.2024-0180

ULTRA-SHORT-TERM FORECASTING MODEL OF PHOTOVOLTAIC POWER BASED ON IMPROVED EMOTIONAL NEURAL NETWORK USING BO-SVM AND ISO

  • Wang Yufei, Wang Xianzhe, Xue Hua, Yu Guangzheng, Yang Xiu
Author information +
History +

Abstract

Aiming at the problem of low accuracy in ultra-short-term photovoltaic power forecasting, caused by weak fitting ability of short reflex pathway of traditional brain emotional neural network (ENN), a modified model based on ENN using bayesian optimization-support vector machine (BO-SVM) and improved snake optimization (ISO) is proposed. Firstly, in order to improve the nonlinear fitting ability of short reflen pathway, the hyperplane selection method of three-dimension phase points of historical data based on BO-SVM is adopted, and the nonlinear features of historical data are extracted by considering the distance between three-dimension phase points and hyperplane. Secondly, the snake optimization algorithm is improved and applied to the weight optimization of ENN, to ensure the short reflen pathway can reasonably express the nonlinear characteristics of the historical data. Then, the chaos phase space reconstruction of photovoltaic power time series is carried out, and the ultra-short-term forecasting model of photovoltaic power based on improved ENN using BO-SVM and ISO is established. Finally, the proposed ultra-short term forecasting model of photovoltaic power is verified using the measured data, which can realize the improvement of accuracy under different weather conditions.

Key words

photovoltaic power / forecasting / chaos theory / improved brain emotional neural network

Cite this article

Download Citations
Wang Yufei, Wang Xianzhe, Xue Hua, Yu Guangzheng, Yang Xiu. ULTRA-SHORT-TERM FORECASTING MODEL OF PHOTOVOLTAIC POWER BASED ON IMPROVED EMOTIONAL NEURAL NETWORK USING BO-SVM AND ISO[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 280-288 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0180

References

[1] 辛保安, 单葆国, 李琼慧, 等. “双碳” 目标下“能源三要素” 再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126.
XIN B A, SHAN B G, LI Q H, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126.
[2] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[3] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q, et al.Power forecast of photovoltaic generation based on XGBoost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
[4] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[5] TEMENG V A, ZIGGAH Y Y, ARTHUR C K.A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network[J]. International journal of mining science and technology, 2020, 30(5): 683-689.
[6] LIN C M, PHAM D H, HUYNH T T.Encryption and decryption of audio signal and image secure communications using chaotic system synchronization control by TSK fuzzy brain emotional learning controllers[J]. IEEE transactions on cybernetics, 2022, 52(12): 13684-13698.
[7] 魏民祥, 杨佳伟, 陈凯, 等. 基于改进大脑情感学习模型的车辆纵向跟随[J]. 吉林大学学报(工学版), 2022, 52(12): 2994-3005.
WEI M X, YANG J W, CHEN K, et al.Vehicle longitudinal following based on improved brain emotional learning model[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(12): 2994-3005.
[8] BRAZ C M, COELHO J P, GONÇALVES J. Semi-active vibration control of a non-collocated civil structure using evolutionary-based BELBIC[J]. Actuators, 2019, 8(2): 43.
[9] SOUZANCHI-K M, AKBARZADEH-T M R. Brain emotional learning impedance control of uncertain nonlinear systems with time delay: experiments on a hybrid elastic joint robot in telesurgery[J]. Computers in biology and medicine, 2021, 138: 104786.
[10] LOTFI E, AKBARZADEH-T M R. A winner-take-all approach to emotional neural networks with universal approximation property[J]. Information sciences, 2016, 346: 369-388.
[11] FARHOUDI Z, SETAYESHI S.Fusion of deep learning features with mixture of brain emotional learning for audio-visual emotion recognition[J]. Speech communication, 2021, 127: 92-103.
[12] 梅英, 谭冠政, 刘振焘, 等. 基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测[J]. 物理学报, 2018, 67(8): 20-31.
MEI Y, TAN G Z, LIU Z T, et al.Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm[J]. Acta physica sinica, 2018, 67(8): 20-31.
[13] WANG Y F, ZHU L, XUE H.Ultra-short-term photovoltaic power prediction model based on the localized emotion reconstruction emotional neural network[J]. Energies, 2020, 13(11): 2857.
[14] XU C, WANG C H, JIANG J G, et al.Memristive circuit implementation of context-dependent emotional learning network and its application in multitask[J]. IEEE transactions on computer-aided design of integrated circuits and systems, 2022, 41(9): 3052-3065.
[15] PURI A, KUMAR GUPTA M.Improved hybrid bag-boost ensemble with K-Means-SMOTE-ENN technique for handling noisy class imbalanced data[J]. The computer journal, 2022, 65(1): 124-138.
[16] 王育飞, 杨启星, 薛花. 考虑混沌特征的增强型大脑情绪神经网络光伏发电功率超短期预测模型[J]. 高电压技术, 2021, 47(4): 1165-1177.
WANG Y F, YANG Q X, XUE H.Ultra-short-term prediction model of enhanced brain emotional neural network considering chaotic characteristics for photovoltaic power generation[J]. High voltage engineering, 2021, 47(4): 1165-1177.
[17] 陈元峰, 马溪原, 程凯, 等. 基于气象特征量选取与SVM模型参数优化的新能源超短期功率预测[J]. 太阳能学报, 2023, 44(12): 568-576.
CHEN Y F, MA X Y, CHENG K, et al.Ultra-short-term power forecast of new energy based on meteorological feature selection and SVM model parameter optimization[J]. Acta energiae solaris sinica, 2023, 44(12): 568-576.
[18] 栗磊, 王廷涛, 赫嘉楠, 等. 考虑过采样器与分类器参数优化的变压器故障诊断策略[J]. 电力自动化设备, 2023, 43(1): 209-217.
LI L, WANG T T, HE J N, et al.Transformer fault diagnosis strategy considering parameter optimization of oversampler and classifier[J]. Electric power automation equipment, 2023, 43(1): 209-217.
[19] 陈世群, 杨耿杰, 高伟. 一种基于BOA-SAE-EELM的光伏阵列故障诊断方法[J]. 太阳能学报, 2022, 43(4): 154-161.
CHEN S Q, YANG G J, GAO W.A fault diagnosis method for photovoltaic array based on BOA-SAE-EELM[J]. Acta energiae solaris sinica, 2022, 43(4): 154-161.
[20] HASHIM F A, HUSSIEN A G.Snake Optimizer: a novel meta-heuristic optimization algorithm[J]. Knowledge-based systems, 2022, 242: 108320.
[21] 王育飞, 付玉超, 薛花. 计及太阳辐射和混沌特征提取的光伏发电功率DMCS-WNN预测法[J]. 中国电机工程学报, 2019, 39(S1): 63-71.
WANG Y F, FU Y C, XUE H.DMCS-WNN prediction method of photovoltaic power considering solar radiation and chaotic feature extraction[J]. Proceedings of the CSEE, 2019, 39(S1): 63-71.
[22] 李东东, 刘宇航, 赵阳, 等. 基于改进生成对抗网络的风机行星齿轮箱故障诊断方法[J]. 中国电机工程学报, 2021, 41(21): 7496-7507.
LI D D, LIU Y H, ZHAO Y, et al.Fault diagnosis method of wind turbine planetary gearbox based on improved generative adversarial network[J]. Proceedings of the CSEE, 2021, 41(21): 7496-7507.
[23] 张译丹, 李奇, 尹良震, 等. 引入自监督机制的燃料电池水管理系统健康状态检测方法[J]. 中国电机工程学报, 2023, 43(13): 5025-5037.
ZHANG Y D, LI Q, YIN L Z, et al.A health state detection method of fuel cell water management system with the introduction of self-supervision mechanism[J]. Proceedings of the CSEE, 2023, 43(13): 5025-5037.
PDF(3196 KB)

Accesses

Citation

Detail

Sections
Recommended

/