GRID DIVISION FOR SURFACE SOLAR RADIATION OBSERVATIONS BY CONSIDERING ITS SPATIOTEMPORAL HETEROGENEITY

Zhuang Shuyi, Bu Qiangsheng, Luo Fei, Zhang Tong, Ye Zhigang, Guo Ye

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 501-509.

PDF(4286 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4286 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 501-509. DOI: 10.19912/j.0254-0096.tynxb.2024-0185

GRID DIVISION FOR SURFACE SOLAR RADIATION OBSERVATIONS BY CONSIDERING ITS SPATIOTEMPORAL HETEROGENEITY

  • Zhuang Shuyi, Bu Qiangsheng, Luo Fei, Zhang Tong, Ye Zhigang, Guo Ye
Author information +
History +

Abstract

This study, taking Jiangsu Province as an example, explores a regional continuous grid division scheme by combining remote sensing-based surface solar radiation data with Gaussian mixture models. The research confirms that the hourly radiation data obtained from remote sensing inversion has high accuracy in Jiangsu Province in comparison to ground observations, with correlation coefficients of 0.95 and 0.89 for the global and diffuse radiation, respectively. In addition, the spatiotemporally continuous estimates accurately reveal the spatial differences and monthly variations in both global and diffuse radiation within the region. Using monthly sequences as the basis for solar radiation zoning, this study checks the changes in information entropy and actual zone number of the zoning result of Gaussian mixture model under different maximum zone number constraints, finding that constructing 100 to 208 continuous zones in Jiangsu Province is appropriate. As the zone number increases, the zoning granularity becomes finer, and the zoning scheme evolves from mainly revealing differences in the amount of surface radiation to concurrently considering differences in both the amount and variations.

Key words

solar radiation / Gaussian distribution / spatio-temporal data / solar energy / geographic zoning / remote sensing applications

Cite this article

Download Citations
Zhuang Shuyi, Bu Qiangsheng, Luo Fei, Zhang Tong, Ye Zhigang, Guo Ye. GRID DIVISION FOR SURFACE SOLAR RADIATION OBSERVATIONS BY CONSIDERING ITS SPATIOTEMPORAL HETEROGENEITY[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 501-509 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0185

References

[1] QIN J, JIANG H, LU N, et al.Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning[J]. Renewable and sustainable energy reviews, 2022, 167: 112680.
[2] 邢晨, 张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报, 2023, 44(2): 373-380.
XING C, ZHANG Z B.Short-term probabilistic forecasting method of photovoltaic output power based on improved temporal convolutional network[J]. Acta energiae solaris sinica, 2023, 44(2): 373-380.
[3] JIANG H, LU N, QIN J, et al.A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data[J]. Renewable and sustainable energy reviews, 2019, 114: 109327.
[4] 王苏, 濮梅娟, 唐宇, 等. 江苏省太阳总辐射气候变化特征及区划分析[C]//“推进气象科技创新,提高防灾减灾和应对气候变化能力”: 江苏省气象学会第七届学术交流会论文集. 苏州, 中国, 2011: 57.
WANG S, PU M J, TANG Y, et al.Climate change characteristics and zoning analysis of total solar radiation in Jiangsu Province[C]//“Promoting meteorological scientific and technological innovation, improving disaster prevention, mitigation and response to climate change”: Proceedings of the Seventh Symposium of the Meteorological Society of Jiangsu Province. Suzhou, China, 2011: 57.
[5] CALCABRINI A, ZIAR H, ISABELLA O, et al.A simplified skyline-based method for estimating the annual solar energy potential in urban environments[J]. Nature energy, 2019, 4: 206-215.
[6] WALSH A, CÓSTOLA D, LABAKI L C. Review of methods for climatic zoning for building energy efficiency programs[J]. Building and environment, 2017, 112: 337-350.
[7] 王炳忠. 中国太阳能资源利用区划[J]. 太阳能学报, 1983, 4(3): 221-228.
WANG B Z.Solar energy resource division in China[J]. Acta energiae solaris sinica, 1983, 4(3): 221-228.
[8] WAN K K W, LI D H W, YANG L, et al. Climate classifications and building energy use implications in China[J]. Energy and buildings, 2010, 42(9): 1463-1471.
[9] BAI L J, WANG S S.Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China[J]. Energy, 2019, 170: 709-719.
[10] 周扬, 吴文祥, 胡莹, 等. 西北地区太阳能资源空间分布特征及资源潜力评估[J]. 自然资源学报, 2010, 25(10): 1738-1749.
ZHOU Y, WU W X, HU Y, et al.The temporal-spatial distribution and evaluation of potential solar energy resources in northwest China[J]. Journal of natural resources, 2010, 25(10): 1738-1749.
[11] LAU C C S, LAM J C, YANG L. Climate classification and passive solar design implications in China[J]. Energy conversion and management, 2007, 48(7): 2006-2015.
[12] LIU Y F, ZHOU Y, WANG D J, et al.Classification of solar radiation zones and general models for estimating the daily global solar radiation on horizontal surfaces in China[J]. Energy conversion and management, 2017, 154: 168-179.
[13] PINKER R T, LASZLO I.Modeling surface solar irradiance for satellite applications on a global scale[J]. Journal of applied meteorology, 1992, 31(2): 194-211.
[14] ZHANG X T, LIANG S L, ZHOU G Q, et al.Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data[J]. Remote sensing of environment, 2014, 152: 318-332.
[15] ZHANG X X, LU N, JIANG H, et al.Evaluation of reanalysis surface incident solar radiation data in China[J]. Scientific reports, 2020, 10(1): 3494.
[16] ANTONIAK C E.Mixtures of dirichlet processes with applications to Bayesian nonparametric problems[J]. The annals of statistics, 1974, 2(6): 1152-1174.
[17] JIANG H, LU N, QIN J, et al.Hierarchical identification of solar radiation zones in China[J]. Renewable and sustainable energy reviews, 2021, 145: 111105.
[18] SOUBDHAN T, EMILION R, CALIF R.Classification of daily solar radiation distributions using a mixture of Dirichlet distributions[J]. Solar energy, 2009, 83(7): 1056-1063.
[19] HUANG G H, LI Z Q, LI X, et al.Estimating surface solar irradiance from satellites: past, present, and future perspectives[J]. Remote sensing of environment, 2019, 233: 111371.
[20] JIANG H, LU N, QIN J, et al.Hourly 5-km surface total and diffuse solar radiation in China, 2007—2018[J]. Scientific data, 2020, 7(1): 311.
[21] ZHANG X T, LIANG S L, WILD M, et al.Analysis of surface incident shortwave radiation from four satellite products[J]. Remote sensing of environment, 2015, 165: 186-202.
[22] WANG L C, LU Y B, ZOU L, et al.Prediction of diffuse solar radiation based on multiple variables in China[J]. Renewable and sustainable energy reviews, 2019, 103: 151-216.
[23] SETHURAMAN J.A constructive definition of dirichlet priors[J]. Statistica sinica, 1994, 4(2): 639-650.
[24] BLEI D M, JORDAN M I.Variational inference for dirichlet process mixtures[J]. Bayesian analysis, 2006, 1(1): 121-144.
[25] 王鎏琳, 宁亮, 陈可凡, 等. 历史时期太阳辐射强度对强梅雨事件年代际变率的影响及机制[J]. 中国科学: 地球科学, 2023, 53(2): 394-402.
WANG L, NING L, CHEN K F, et al.Influence and mechanism of solar radiation intensity on the interdecadal variability of strong Meiyu events during historical periods[J]. Scientia sinica (terrae), 2023, 53(2): 394-402.
[26] 刘建军. 长三角太湖地区云和气溶胶辐射特性的地基遥感研究[D]. 南京: 南京信息工程大学, 2012.
LIU J J.Ground-based remote sensing study on cloud and aerosol radiation characteristics in Taihu Lake area of Yangtze River Delta[D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
[27] 张星星, 吕宁, 姚凌, 等. ECMWF地表太阳辐射数据在我国的误差及成因分析[J]. 地球信息科学学报, 2018, 20(2): 254-267.
ZHANG X X, LYU N, YAO L, et al.Error analysis of ECMWF surface solar radiation data in China[J]. Journal of geo-information science, 2018, 20(2): 254-267.
[28] YU L, ZHANG M, WANG L C, et al.Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China[J]. Atmospheric research, 2021, 248: 105162.
[29] 方鹤锦. 中国陆地高分辨率太阳散射辐射数据集重建及其变化特征分析[D]. 武汉: 中国地质大学, 2022.
FANG H J.Reconstruction of land high-resolution diffuse solar radiation data set in China and analysis of its change characteristics[D]. Wuhan: China University of Geosciences, 2022.
[30] 齐月, 房世波, 周文佐. 近50年来中国地面太阳辐射变化及其空间分布[J]. 生态学报, 2014, 34(24): 7444-7453.
QI Y, FANG S B, ZHOU W Z.Variation and spatial distribution of surface solar radiation in China over recent 50 years[J]. Acta ecologica sinica, 2014, 34(24): 7444-7453.
[31] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al.Scikit-learn: machine learning in Python[J]. Journal of machine learning research, 2011, 12: 2825-2830.
[32] LIU Y J, YAO L, JIANG H, et al.Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data[J]. Renewable energy, 2022, 189: 1249-1258.
[33] 何威, 苏中元, 史金林, 等. 基于双重注意力GRU与相似修正的光伏功率预测[J]. 太阳能学报, 2024, 45(3): 480-487.
HE W, SU Z Y, SHI J L, et al.Photovoltaic power forecasting based on dual-attention-GRU and similarity modification[J]. Acta energiae solaris sinica, 2024, 45(3): 480-487.
[34] 郑诗程, 许浩, 郎佳红, 等. 计及光伏不确定性的多区域综合能源系统多场景分布鲁棒优化调度[J]. 太阳能学报, 2024, 45(3): 460-469.
ZHENG S C, XU H, LANG J H, et al.Multi-scenario distributed robust optimal scheduling of multi-area integrated energy systems considering photovoltaic uncertainty[J]. Acta energiae solaris sinica, 2024, 45(3): 460-469.
PDF(4286 KB)

Accesses

Citation

Detail

Sections
Recommended

/