INFLUENCE OF PLANETARY GEAR SLIDING BEARING ON VIBRATION CHARACTERISTICS OF WIND TURBINE DRIVETRAIN

Fei Wenjun, Tan Jianjun, Zhu Caichao, Li Hao, Ye Wei, Sun Zhangdong

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 645-658.

PDF(6215 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6215 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 645-658. DOI: 10.19912/j.0254-0096.tynxb.2024-0196

INFLUENCE OF PLANETARY GEAR SLIDING BEARING ON VIBRATION CHARACTERISTICS OF WIND TURBINE DRIVETRAIN

  • Fei Wenjun1, Tan Jianjun1,2, Zhu Caichao1, Li Hao1, Ye Wei3, Sun Zhangdong2
Author information +
History +

Abstract

Under heavy load conditions, there is a complex nonlinear coupling relationship between the structure deformation of the wind turbine drivetrain and the dynamic clearance of the planetary gear sliding bearing, which easily causes the edge contact wear of the sliding bearing and reduces the stability of the system. Based on the 2MW wind turbine drivetrain, this study considers the flexibility of the contact interface of the planetary gear sliding bearing as well as the flexibility of the complex-shaped components such as the gearbox housing and the ring gear. The average flow Reynolds equation is used to compute the dynamic film thickness of the planetary gear sliding bearing. The correlation between the gearbox housing, ring gear, coupling points of the carrier and elastic support is established by the finite element reduction theory. A tribo-dynamic coupling model of wind turbine drivetrain with planetary gear sliding bearing is established. The influences of operating conditions of wind turbine drivetrain and structure parameters of the planetary gear sliding bearing on the dynamic characteristics of wind turbine drivetrain are investigated, and a test rig is conducted to validate the theoretical analysis. The results show that the uneven tooth load distribution of the planetary gear train system could be improved by increasing input torque and reducing the clearance of the sliding bearing. The planetary gear sliding bearing does not change the dominant frequency components of the system vibration acceleration response, but it will cause an extra frequency related to the rotational frequency of the planetary gear in vibration displacement, and increasing the width-diameter ratio and clearance of the planetary gear sliding bearing will increase the system vibration. The planetary gear sliding bearing is prone to solid contact under high-torque conditions, but reducing the width-to-diameter ratio and clearance of the planetary gear sliding bearing is conducive to improving the load-sharing performance of the planetary gear train system.

Key words

wind turbines / drivetrain / sliding bearing / structural flexibility / dynamic characteristics

Cite this article

Download Citations
Fei Wenjun, Tan Jianjun, Zhu Caichao, Li Hao, Ye Wei, Sun Zhangdong. INFLUENCE OF PLANETARY GEAR SLIDING BEARING ON VIBRATION CHARACTERISTICS OF WIND TURBINE DRIVETRAIN[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 645-658 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0196

References

[1] 朱才朝, 周少华, 张亚宾, 等. 滑动轴承在风电齿轮箱中的应用现状与发展趋势[J]. 风能, 2021(9): 38-42.
ZHU C Z, ZHOU S H, ZHANG Y B, et al.Application status and development trend of sliding bearing in wind turbine gearbox[J]. Wind energy, 2021(9): 38-42.
[2] 李浩, 朱才朝, 谭建军, 等. 风电机组用滑动轴承研究现状与发展趋势[J]. 太阳能学报, 2024, 45(5): 77-85.
LI H, ZHU C C, TAN J J, et al.Research status and development trend of sliding bearings in wind turbine[J]. Acta energiae solaris sinica, 2024, 45(5): 77-85.
[3] XIE Z L, RAO Z S, LIU H L.Effect of surface topography and structural parameters on the lubrication performance of a water-lubricated bearing: theoretical and experimental study[J]. Coatings, 2019, 9(1): 23.
[4] 唐浩, 谭建军, 李浩, 等. 应用滑动轴承的风电齿轮箱行星轮系动力学建模及解耦方法研究[J]. 中国机械工程, 2024, 35(4): 591-601.
TANG H, TAN J J, LI H, et al.Study on dynamic modeling and decoupling method of planetary gear train of wind turbine gearbox with sliding bearing[J]. China industrial economics, 2024, 35(4): 591-601.
[5] 赵新泽, 彭文昱, 徐翔, 等. 结构参数对滑动轴承润滑性能的影响[J]. 机械设计与制造, 2018(7): 214-217.
ZHAO X Z, PENG W Y, XU X, et al.Effects of structural parameters on lubricating performance of sliding bearing[J]. Machinery design & manufacture, 2018(7): 214-217.
[6] 邵钢, 胡新亮, 孙军. 结构和工况参数对动压滑动轴承润滑性能影响的研究[J]. 轴承, 2018(9): 29-33.
SHAO G, HU X L, SUN J.Research on effect of structure and operating parameters on lubrication performance of hydrodynamic journal bearings[J]. Bearing, 2018(9): 29-33.
[7] 鄢砚军, 吴新跃, 徐慧慧, 等. 基于FLUENT不同接触角下径向滑动轴承润滑性能研究[J]. 船舶力学, 2018, 22(11): 1387-1395.
YAN Y J, WU X Y, XU H H, et al.Study on lubrication performance of radial sliding bearing with different contact angles based on FLUENT[J]. Journal of ship mechanics, 2018, 22(11): 1387-1395.
[8] XIE Z L, SHEN N W, ZHU W D, et al.Theoretical and experimental investigation on the influences of misalignment on the lubrication performances and lubrication regimes transition of water lubricated bearing[J]. Mechanical systems and signal processing, 2021, 149: 107211.
[9] LI P, SHI Z Q, ZHANG H, et al.Investigation on the lubrication characteristics of low-viscosity lubricated micro-grooved bearings considering turbulence and misalignment[J]. Physics of fluids, 2022, 34(11): 115144.
[10] LYU F R, JIAO C X, JIA Q, et al.Influence of structural and operating parameters on lubrication performance of water-lubricated polymer bearing with journal misalignment[J]. Lubricants, 2022, 10(12): 336.
[11] LUCASSEN M, DECKER T, GUZMÁN F G, et al. Simulation methodology for the identification of critical operating conditions of planetary journal bearings in wind turbines[J]. Forschung im ingenieurwesen, 2023, 87(1): 147-157.
[12] YANG J, ZHU R P, LEE H P, et al.Experimental and numerical dynamic analysis of marine herringbone planetary gearbox supported by journal bearings[J]. Journal of sound and vibration, 2023, 545: 117426.
[13] GONG J Y, LIU K, ZHENG Y, et al.Thermal-elastohydrodynamic lubrication study of misaligned journal bearing in wind turbine gearbox[J]. Tribology international, 2023, 188: 108887.
[14] ZHANG K, CHEN Q, ZHANG Y B, et al.Numerical and experimental investigations on thermoelastic hydrodynamic performance of planetary gear sliding bearings in wind turbine gearboxes[J]. Tribology international, 2024, 191: 109081.
[15] HELSEN J, VANHOLLEBEKE F, MARRANT B, et al.Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes[J]. Renewable energy, 2011, 36(11): 3098-3113.
[16] 赵宇豪, 魏静, 张世界, 等. 结构柔性对大型风电机组齿轮传动系统动态响应的影响分析[J]. 太阳能学报, 2021, 42(12): 174-182.
ZHAO Y H, WEI J, ZHANG S J, et al.Study of effect of structural flexibility on dynamic characteristics of large-scale wind turbine gear transmission system[J]. Acta energiae solaris sinica, 2021, 42(12): 174-182.
[17] 白聪儿, 孙哲杰, 秦美娟, 等. 风电机组传动链动力响应特性与支撑系统影响[J]. 浙江大学学报(工学版), 2023, 57(6): 1165-1174.
BAI C E, SUN Z J, QIN M J, et al.Dynamic response characteristics of wind turbine drivetrain and influence of support system[J]. Journal of Zhejiang University (engineering science), 2023, 57(6): 1165-1174.
[18] 谭建军, 朱才朝, 宋朝省, 等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(7): 341-351.
TAN J J, ZHU C C, SONG C S, et al.Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling[J]. Acta energiae solaris sinica, 2020, 41(7): 341-351.
[19] TAN J J, ZHU C C, SONG C S, et al.Dynamic modeling and analysis of wind turbine drivetrain considering platform motion[J]. Mechanism and machine theory, 2019, 140: 781-808.
[20] PARK Y J, LEE G H, SONG J S, et al.Characteristic analysis of wind turbine gearbox considering non-torque loading[J]. Journal of mechanical design, 2013, 135(4): 044501.
[21] GUO Y, KELLER J, LACAVA W.Planetary gear load sharing of wind turbine drivetrains subjected to non-torque loads[J]. Wind energy, 2015, 18(4): 757-768.
[22] HAGEMANN T, DING H H, RADTKE E, et al.Operating behavior of sliding planet gear bearings for wind turbine gearbox applications: part I: basic relations[J]. Lubricants, 2021, 9(10): 97.
[23] HAGEMANN T, DING H H, RADTKE E, et al.Operating behavior of sliding planet gear bearings for wind turbine gearbox applications part Ⅱ: impact of structure deformation[J]. Lubricants, 2021, 9(10): 98.
[24] ZHANG C P, WEI J, WANG F M, et al.Dynamic model and load sharing performance of planetary gear system with journal bearing[J]. Mechanism and machine theory, 2020, 151: 103898.
[25] WU C W, ZHENG L Q.An average Reynolds equation for partial film lubrication with a contact factor[J]. Journal of tribology, 1989, 111(1): 188-191.
[26] CUI S H, GU L, WANG L Q, et al.Numerical analysis on the dynamic contact behavior of hydrodynamic journal bearings during start-up[J]. Tribology international, 2018, 121: 260-268.
[27] KIM J H, BOO S H, LEE P S.A dynamic condensation method with free interface substructuring[J]. Mechanical systems and signal processing, 2019, 129: 218-234.
[28] MENG F M, CHEN Y P.Analysis of elasto-hydrodynamic lubrication of journal bearing based on different numerical methods[J]. Industrial lubrication and tribology, 2015, 67(5): 486-497.
[29] 谭建军, 李浩, 杨书益, 等. 重载工况下行星齿轮传动啮合偏载分析[J]. 中国机械工程, 2023, 34(13): 1513-1524.
TAN J J, LI H, YANG S Y, et al.Study on unbalanced meshing loads of planetary gear transmission under heavy-load conditions[J]. China mechanical engineering, 2023, 34(13): 1513-1524.
[30] TAN J J, LI H, TANG H, et al.Dynamic modeling and analysis of planetary gear train system considering structural flexibility and dynamic multi-teeth mesh process[J]. Mechanism and machine theory, 2023, 186: 105348.
[31] XIE S Y, JIN X, HE J.Structural vibration control for the offshore floating wind turbine including drivetrain dynamics analysis[J]. Journal of renewable and sustainable energy, 2019, 11(2): 023304.
[32] ZHOU C, CHEN C L, GUI L J, et al.A nonlinear multi-point meshing model of spur gears for determining the face load factor[J]. Mechanism and machine theory, 2018, 126: 210-224.
[33] GE H D, SHEN Y B, ZHU Y Q, et al.Simulation and experimental test of load-sharing behavior of planetary gear train with flexible ring gear[J]. Journal of mechanical science and technology, 2021, 35(11): 4875-4888.
PDF(6215 KB)

Accesses

Citation

Detail

Sections
Recommended

/