RESEARCH PROGRESS ON SOLAR CELLS BASED ON SYNERGISTIC HARVESTING OF RAINDROP AND SOLAR ENERGY

Guo Jiangtao, Yang Wen, Lin Jing, Yuan Yue, Yang Peizhi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 251-259.

PDF(3959 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3959 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 251-259. DOI: 10.19912/j.0254-0096.tynxb.2024-0197

RESEARCH PROGRESS ON SOLAR CELLS BASED ON SYNERGISTIC HARVESTING OF RAINDROP AND SOLAR ENERGY

  • Guo Jiangtao, Yang Wen, Lin Jing, Yuan Yue, Yang Peizhi
Author information +
History +

Abstract

This article reviewed the development progress of hybrid energy harvesting solar cells in recent years. A systematic summary of hybrid energy harvesting solar cells was conducted from the working principle of solid-liquid triboelectric nanogenerator, the structure optimization of hybrid energy harvesting solar cells, and the synergistic harvesting strategies of raindrop and solar energy. The effect of friction layer modification on the performance of hybrid energy harvesting solar cells was emphatically analyzed, and the multi-effect harvesting strategies of hybrid energy harvesting solar cells were discussed. Finally, the existing problems in hybrid energy harvesting solar cells were identified, and their future development trends were discussed.

Key words

photovoltaics / solar cell efficiency / triboelectricity / triboelectric nanogenerator / carbon neutrality

Cite this article

Download Citations
Guo Jiangtao, Yang Wen, Lin Jing, Yuan Yue, Yang Peizhi. RESEARCH PROGRESS ON SOLAR CELLS BASED ON SYNERGISTIC HARVESTING OF RAINDROP AND SOLAR ENERGY[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 251-259 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0197

References

[1] FAN F R, TIAN Z Q, WANG Z L.Flexible triboelectric generator[J]. Nano energy, 2012, 1(2): 328-334.
[2] YI F, LIN L, NIU S M, et al.Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor[J]. Advanced functional materials, 2014, 24(47): 7488-7494.
[3] GUO J T, YANG X Y, XIE Y T, et al.Boosting the power conversion efficiency of hybrid triboelectric-photovoltaic cells through the field coupling effect[J]. Device, 2025, 3(1): 100562.
[4] YANG X Y, CHAN S, WANG L Y, et al.Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range[J]. Nano energy, 2018, 44: 388-398.
[5] NIE J H, WANG Z M, REN Z W, et al.Power generation from the interaction of a liquid droplet and a liquid membrane[J]. Nature communications, 2019, 10: 2264.
[6] YAN X T, XU W H, DENG Y J, et al. Bubble energy generator[J]. Science advances, 2022, 8(25): eabo7698.
[7] LI Z, YANG D M, ZHANG Z H, et al.A droplet-based electricity generator for large-scale raindrop energy harvesting[J]. Nano energy, 2022, 100: 107443.
[8] DENG Z C, XU L, QIN H F, et al.Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing[J]. Advanced materials, 2022, 34(39): 2205064.
[9] GU H J, ZHANG N, ZHOU Z Y, et al.A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting[J]. Nano energy, 2021, 87: 106218.
[10] DONG Y, XU S W, ZHANG C, et al. Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power[J]. Science advances, 2022, 8(48): eadd0464.
[11] NIU S M, WANG X F, YI F, et al.A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature communications, 2015, 6: 8975.
[12] 王中林, 陈鹏飞. 从物联网时代的高熵能源到迈向碳中和的蓝色大能源: 接触起电的物理机理与摩擦纳米发电机的科学构架[J]. 物理, 2021, 50(10): 649-662.
WANG Z L, CHEN P F.From high-entropy energy in the Internet of Things era to large-scale blue energy for carbon neutralization: the physical mechanism of contact electrification and the scientific framework of triboelectric nanogenerators[J]. Physics, 2021, 50(10): 649-662.
[13] CHENG B L, NIU S S, XU Q, et al.Gridding triboelectric nanogenerator for raindrop energy harvesting[J]. ACS applied materials & interfaces, 2021, 13(50): 59975-59982.
[14] ZHANG Z H, LI X M, YIN J, et al.Emerging hydrovoltaic technology[J]. Nature nanotechnology, 2018, 13(12): 1109-1119.
[15] AJI A S, NISHI R, AGO H, et al.High output voltage generation of over 5 V from liquid motion on single-layer MoS2[J]. Nano energy, 2020, 68: 104370.
[16] GOUY M.Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. Journal de physique théorique et appliquée, 1910, 9(1): 457-468.
[17] MOONEY M.Electrophoresis and the diffuse ionic layer[J]. The journal of physical chemistry, 1931, 35(1): 331-344.
[18] STERN O.Zur theorie der elektrolytischen doppelschicht: zeitschr[J]. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924, 30(21): 508-516.
[19] WANG Z L, WANG A C.On the origin of contact-electrification[J]. Materials today, 2019, 30: 34-51.
[20] LIN S Q, CHEN X Y, WANG Z L.Contact electrification at the liquid-solid interface[J]. Chemical reviews, 2022, 122(5): 5209-5232.
[21] ZHAN F, WANG A C, XU L, et al.Electron transfer as a liquid droplet contacting a polymer surface[J]. ACS nano, 2020, 14(12): 17565-17573.
[22] ZHAO L L, LIU L Q, YANG X Y, et al.Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting[J]. Journal of materials chemistry A, 2020, 8(16): 7880-7888.
[23] NIE S X, GUO H Y, LU Y X, et al.Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting[J]. Advanced materials technologies, 2020, 5(9): 2000454.
[24] XU W H, ZHENG H X, LIU Y, et al.A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396.
[25] YANG Y, ZHANG H L, LIU Y, et al.Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics[J]. ACS nano, 2013, 7(3): 2808-2813.
[26] LIU Y Q, SUN N, LIU J W, et al.Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops[J]. ACS nano, 2018, 12(3): 2893-2899.
[27] ZHAO L L, DUAN J L, LIU L Q, et al.Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting[J]. Nano energy, 2021, 82: 105773.
[28] LIU T, ZHENG Y, XU Y X, et al.Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: synergistic solar and raindrop energy conversion for window-integrated applications[J]. Nano energy, 2022, 103: 107776.
[29] LIAO M Z, XU W H, SONG Y X, et al.An integrated electricity generator harnessing water and solar energy featuring common-electrode configuration[J]. Nano energy, 2023, 116: 108831.
[30] YE C Y, LIU D, CHEN P F, et al.An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy[J]. Advanced materials, 2023, 35(11): 2209713.
[31] ZHENG Y, LIU T, WU J P, et al.Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting[J]. Advanced materials, 2022, 34(28): 2202238.
[32] JEON S B, KIM D, YOON G W, et al.Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight[J]. Nano energy, 2015, 12: 636-645.
[33] 沈向前, 韩非, 蒋斯涵, 等. 基于蛾眼仿生结构的钙钛矿太阳电池表界面光学调控[J]. 太阳能学报, 2024, 45(4): 85-90.
SHEN X Q, HAN F, JIANG S H, et al.Optical modulation of surface/interface of perovskite solar cells based on moth eye bio-inspired structure[J]. Acta energiae solaris sinica, 2024, 45(4): 85-90.
[34] YOO D, PARK S C, LEE S, et al.Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies[J]. Nano energy, 2019, 57: 424-431.
[35] LIU X L, CHENG K, CUI P, et al.Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops[J]. Nano energy, 2019, 66: 104188.
[36] 廖智兴, 刘全兵, 黄斯珉, 等. 基于表面改性的光伏组件冷凝除尘特性研究[J]. 太阳能学报, 2022, 43(11): 33-40.
LIAO Z X, LIU Q B, HUANG S M, et al.Investigation of condensation-induced dust removal on modified surface for PV module[J], Acta energiae solaris sinica, 2022, 43(11): 33-40.
[37] YANG D, NI Y F, SU H, et al.Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator[J]. Nano energy, 2021, 79: 105394.
[38] CHEN Z X, LU Y, MANICA R, et al.Cellulose-based slippery covalently attached liquid surfaces for synergistic rain and solar energy harvesting[J]. Nanoscale, 2023, 15(18): 8158-8168.
[39] 王龙祥, 邢美波, 王瑞祥. 基于量子点太阳电池的高效光学利用策略[J]. 太阳能学报, 2023, 44(2): 436-444.
WANG L X, XING M B, WANG R X.Efficient light utilization strategies based on quantum dot solar cells[J]. Acta energiae solaris sinica, 2023, 44(2): 436-444.
[40] WANG L Y, WANG Y, WANG H, et al.Carbon dot-based composite films for simultaneously harvesting raindrop energy and boosting solar energy conversion efficiency in hybrid cells[J]. ACS nano, 2020, 14(8): 10359-10369.
[41] YUAN J B, YANG X Y, ZHENG D, et al.Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting[J]. Nano energy, 2023, 110: 108341.
[42] XIE L J, YIN L, LIU Y N, et al.Interface engineering for efficient raindrop solar cell[J]. ACS nano, 2022, 16(4): 5292-5302.
[43] ZHENG L, CHENG G, CHEN J, et al.A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock[J]. Advanced energy materials, 2015, 5(21): 1501152.
[44] ZHANG C, ZHANG Z H, YANG X, et al.Tribotronic phototransistor for enhanced photodetection and hybrid energy harvesting[J]. Advanced functional materials, 2016, 26(15): 2554-2560.
[45] ROH H, KIM I, KIM D.Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions[J]. Nano energy, 2020, 70: 104515.
[46] YU X P, WANG Y D, ZHANG J H, et al.Halogen regulation of inorganic perovskites toward robust triboelectric nanogenerators and charging polarity series[J]. Journal of materials chemistry A, 2020, 8(28): 14299-14307.
[47] LEE Y S, JEON S, KIM D, et al.High performance direct current-generating triboelectric nanogenerators based on tribovoltaic p-n junction with ChCl-passivated CsFAMA perovskite[J]. Nano energy, 2023, 106: 108066.
[48] GUO Q Y, YANG X Y, WANG Y D, et al.Dielectric hole collector toward boosting charge transfer of CsPbBr3 hybrid nanogenerator by coupling triboelectric and photovoltaic effects[J]. Advanced functional materials, 2021, 31(32): 2101348.
[49] YIN X, XU B G, KAN C W, et al.Dynamic perovskite homojunction based light-assisted, direct current tribovoltaic nanogenerators[J]. Advanced energy materials, 2023, 13(31): 2301289.
[50] ZHAN W, DING L, SUN N, et al.Lead-free CsBi3I10 perovskite based photo-enhanced triboelectric nanogenerator[J]. Nano energy, 2023, 108: 108209.
[51] YUAN H, XIAO Z X, WAN J X, et al.A rolling-mode Al/CsPbBr3 Schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy[J]. Advanced energy materials, 2022, 12(25): 2200550.
PDF(3959 KB)

Accesses

Citation

Detail

Sections
Recommended

/