FAULT DIAGNOSIS OF PEM ELECTROLYZER BASED ON SMALL CELL VOLTAGE CHARACTERISTICS

Shen Dali, Dong Yan, Yang Fuquan, Lei Zhaoming, Cao Xin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 229-237.

PDF(2064 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2064 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 229-237. DOI: 10.19912/j.0254-0096.tynxb.2024-0207

FAULT DIAGNOSIS OF PEM ELECTROLYZER BASED ON SMALL CELL VOLTAGE CHARACTERISTICS

  • Shen Dali1, Dong Yan1, Yang Fuquan1, Lei Zhaoming1, Cao Xin2
Author information +
History +

Abstract

To quickly detect and accurately identify the electrolytic cells fault, a fault diagnosis method based on an interleaved voltage detection circuit combining a weighted modified variance algorithm and improved correlation coefficient algorithm is proposed to identify and diagnose the various faults of the electrolytic cells with voltage characteristics. Firstly, the method of interleaved voltage detection is used, and the weighted modified variance algorithm is used to extract the fault features, to identify whether there is a fault, and distinguish the small cell fault and voltage sensor fault. Secondly, considering the voltage fluctuation in hydrogen production from renewable energy, it is proposed to utilize the correlation of inter-cell voltages and adopt an improved correlation coefficient algorithm to diagnose faults such as short circuits and water shortage in electrolytic cells. The feasibility of the fault diagnosis method is verified by example analysis and result comparisons.

Key words

electrolytic cells / fault detection / voltage measurement / weighted modified variance / correlation coefficient

Cite this article

Download Citations
Shen Dali, Dong Yan, Yang Fuquan, Lei Zhaoming, Cao Xin. FAULT DIAGNOSIS OF PEM ELECTROLYZER BASED ON SMALL CELL VOLTAGE CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 229-237 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0207

References

[1] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[2] 张盛, 郑津洋, 戴剑锋, 等. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
ZHANG S, ZHENG J Y, DAI J F, et al.Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta energiae solaris sinica, 2024, 45(1): 457-465.
[3] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[4] FENG Q, YUAN X Z, LIU G Y, et al.A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of power sources, 2017, 366: 33-55.
[5] YUE M L, LAMBERT H, PAHON E, et al.Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and sustainable energy reviews, 2021, 146: 111180.
[6] MILLET P, RANJBARI A, DE GUGLIELMO F, et al.Cell failure mechanisms in PEM water electrolyzers[J]. International journal of hydrogen energy, 2012, 37(22): 17478-17487.
[7] LIU C, WRUBEL J, PADGETT E, et al.The impacts of membrane pinholes on PEM water electrolysis[J]. Journal of power sources, 2023, 581: 233507.
[8] WARKENTIN H, O'BRIEN C P, HOLOWKA S, et al. Early warning for the electrolyzer: monitoring CO2 reduction via in-line electrochemical impedance spectroscopy[J]. ChemSusChem, 2023, 16(23): e202300657.
[9] IMMERZ C, BENSMANN B, TRINKE P, et al.Local current density and electrochemical impedance measurements within 50 cm single-channel PEM electrolysis cell[J]. Journal of the Electrochemical Society, 2018, 165(16): F1292-F1299.
[10] IMMERZ C, SCHWEINS M, TRINKE P, et al.Experimental characterization of inhomogeneity in current density and temperature distribution along a single-channel PEM water electrolysis cell[J]. Electrochimica acta, 2018, 260: 582-588.
[11] BORGARDT E, GIESENBERG L, RESKA M, et al.Impact of clamping pressure and stress relaxation on the performance of different polymer electrolyte membrane water electrolysis cell designs[J]. International journal of hydrogen energy, 2019, 44(42): 23556-23567.
[12] MORENO SORIANO R, ROJAS N, NIETO E, et al.Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: bolt torques and operation mode in pre-conditioning[J]. International journal of hydrogen energy, 2021, 46(51): 25944-25953.
[13] LEBBAL M E, LECŒUCHE S. Identification and monitoring of a PEM electrolyser based on dynamical modelling[J]. International journal of hydrogen energy, 2009, 34(14): 5992-5999.
[14] SOOD S, PRAKASH O, DIEULOT J Y, et al.Robust diagnosis of PEM electrolysers using LFT bond graph[J]. International journal of hydrogen energy, 2022, 47(80): 33938-33954.
[15] BERRIAH S, BUADES M D, TREMBLAY G J, et al.Method for detecting faults in electrolyser, involves comparing voltage measurements to synthetic cell voltages for corresponding ones of electrolysis cells to obtain voltage differences[P]. Canada: CA3105842-A1.
[16] LI X Y, WANG Z P.A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles[J]. Measurement, 2018, 116: 402-411.
[17] XIA B, NGUYEN T, YANG J F, et al.The improved interleaved voltage measurement method for series connected battery packs[J]. Journal of power sources, 2016, 334: 12-22.
[18] KANG Y Z, DUAN B, ZHOU Z K, et al.Online multi-fault detection and diagnosis for battery packs in electric vehicles[J]. Applied energy, 2020, 259: 114170.
[19] LI Z X, YANG Y, LI L W, et al.A weighted Pearson correlation coefficient based multi-fault comprehensive diagnosis for battery circuits[J]. Journal of energy storage, 2023, 60: 106584.
[20] LIN T T, CHEN Z Q, ZHOU S Y.Voltage-correlation based multi-fault diagnosis of lithium-ion battery packs considering inconsistency[J]. Journal of cleaner production, 2022, 336: 130358.
[21] 康永哲. 锂离子电池组容量估计与故障诊断方法研究[D]. 济南: 山东大学, 2021.
KANG Y Z.Research on capacity estimation and fault diagnosis method of lithium ion battery pack[D]. Ji'nan: Shandong University, 2021.
[22] SUN J, LU G P, SHANG Y L, et al.A minor-fault diagnosis approach based on modified variance for lithium-ion battery strings[J]. Journal of energy storage, 2023, 63: 106965.
[23] WU X G, WEI Z X, WEN T, et al.Research on short-circuit fault-diagnosis strategy of lithium-ion battery in an energy-storage system based on voltage cosine similarity[J]. Journal of energy storage, 2023, 71: 108012.
[24] 温涛. 锂离子电池内短路故障电热特性等效实验及诊断方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.
WEN T.Study on equivalent experiment and diagnosis method of electrothermal characteristics of internal short circuit fault in lithium ion battery[D]. Harbin: Harbin University of Science and Technology, 2022.
[25] 贺飞, 张雪霞, 陈维荣. 基于P-L双重特征提取的PEMFC系统故障诊断方法[J]. 太阳能学报, 2024, 45(1): 492-499.
HE F, ZHANG X X, CHEN W R.Fault diagnosis method of PEMFC system based on P-L dual feature extraction[J]. Acta energiae solaris sinica, 2024, 45(1): 492-499.
PDF(2064 KB)

Accesses

Citation

Detail

Sections
Recommended

/