OPTOELECTRONIC DESIGN OF HIGH-EFFICIENCY P-TOPCON SOLAR CELLS FEATURING LOCAL P++ CONTACT

Lin Wenjie, Wang Haozheng, Yu Xuegong, Wang Yongqian, Qiu Kaifu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 238-244.

PDF(3008 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3008 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 238-244. DOI: 10.19912/j.0254-0096.tynxb.2024-0215

OPTOELECTRONIC DESIGN OF HIGH-EFFICIENCY P-TOPCON SOLAR CELLS FEATURING LOCAL P++ CONTACT

  • Lin Wenjie1,2, Wang Haozheng1,2, Yu Xuegong1, Wang Yongqian2, Qiu Kaifu2
Author information +
History +

Abstract

This work investigates the effects of the surface morphology and boron diffusion process of boron heavily doped emitter on the passivation properties, contact property and parasitic absorption in the illuminated passivation region and metal contact region, and solar cell performance. Compared with the polished samples, the textured samples show a lower contact resistance of 2.5-3.2 mΩ·cm2, allowing a higher efficiency for p-TOPCon solar cells with localized p++ contact. By using the boron driving-in-time of 3000 s and the new AgAl contact with a lower contact resistance of 0.5 mΩ·cm2, the contact characteristics of the metal contact area, the photoelectric characteristics of the passivated area, and the production cost of the boron diffusion are optimized. The optimized p-TOPCon solar cells achieve an efficiency of 24.62%.

Key words

solar cell / crystalline silicon / optoelectronic design / TOPCon / heavy boron diffusion / local contact / simulated calculation

Cite this article

Download Citations
Lin Wenjie, Wang Haozheng, Yu Xuegong, Wang Yongqian, Qiu Kaifu. OPTOELECTRONIC DESIGN OF HIGH-EFFICIENCY P-TOPCON SOLAR CELLS FEATURING LOCAL P++ CONTACT[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 238-244 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0215

References

[1] FELDMANN F, BIVOUR M, REICHEL C, et al.Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar energy materials and solar cells, 2014, 120: 270-274.
[2] CHEN Y F, CHEN D M, LIU C F, et al.Mass production of industrial tunnel oxide passivated contacts (i-TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 W[J]. Progress in photovoltaics: research and applications, 2019, 27(10): 827-834.
[3] KAFLE B, GORAYA B S, MACK S, et al.TOPCon-technology options for cost efficient industrial manufacturing[J]. Solar energy materials and solar cells, 2021, 227: 111100.
[4] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[5] 吕欣, 林涛, 董鹏. 背表面掺杂对n型TOPCon电池特性的影响研究[J]. 太阳能学报, 2021, 42(11): 41-45.
LYU X, LIN T, DONG P.Influence of back surface doping concentration on n-type TOPCon solar cells[J]. Acta energiae solaris sinica, 2021, 42(11): 41-45.
[6] LIN W J, DAMING CHEN, LIU C F, et al.Green-laser-doped selective emitters with separate BBr3 diffusion processes for high-efficiency n-type silicon solar cells[J]. Solar energy materials and solar cells, 2020, 210: 110462.
[7] RICHTER A, MÜLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature energy, 2021, 6(4): 429-438.
[8] KANE D E, SWANSON R M.Measurement of the emitter saturation current by a contactless photoconductivity decay method[J]. Conference record of the IEEE photovoltaic specialists conference, 1985: 578-583.
[9] TRUPKE T, BARDOS R A, ABBOTT M D, et al.Fast photoluminescence imaging of silicon wafers[C]//2006 IEEE 4th World Conference on Photovoltaic Energy Conference. Waikoloa, HI, USA, 2006: 928-931.
[10] HERLUFSEN S, SCHMIDT J, HINKEN D, et al.Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon[J]. Physica status solidi (RRL)-rapid research letters, 2008, 2(6): 245-247.
[11] MÜLLER M, ALTERMATT P P, SCHLEGEL K, et al. A method for imaging the emitter saturation current with lateral resolution[J]. IEEE journal of photovoltaics, 2012, 2(4): 586-588.
[12] SCHRODER D K, MEIER D L.Solar cell contact resistance: a review[J]. IEEE transactions on electron devices, 1984, 31(5): 637-647.
[13] FELL A, GREULICH J, FELDMANN F, et al.Modeling parasitic absorption in silicon solar cells with a near-surface absorption parameter[J]. Solar energy materials and solar cells, 2022, 236: 111534.
[14] BAKER-FINCH S C, MCINTOSH K R, YAN D, et al. Near-infrared free carrier absorption in heavily doped silicon[J]. Journal of applied physics, 2014, 116(6): 063106.
[15] PV lighthouse, EDNA 2[OL]. https://www2.pvlighthouse.com.au/calculators/EDNA%202/EDNA%202.EDNA2[OL]. https://www2.pvlighthouse.com.au/calculators/EDNA%202/EDNA%202.aspx,2023.6.6.
[16] PADHAMNATH P, KHANNA A, NANDAKUMAR N, et al.Impact of firing temperature on fire-through metal contacts to P-doped (n+) and B-doped (p+) poly-Si[J]. Solar energy materials and solar cells, 2021, 230: 111217.
[17] FRITZ S, Contact formation of Ag/Al screen-printing pastes to heavily B-doped c-Si[D]. Konstanz: University of Konstanz, 2016.
[18] WÖHRLE N, LOHMÜLLER E, GREULICH J, et al. Towards understanding the characteristics of Ag-Al spiking on boron-doped silicon for solar cells[J]. Solar energy materials and solar cells, 2016, 146: 72-79.
[19] LOHMÜLLER E, LOHMÜLLER (NÉE WERNER) S, WÖHRLE N, et al. BBr3 diffusion with second deposition for laser-doped selective emitters from borosilicate glass[J]. Solar energy materials and solar cells, 2018, 186: 291-299.
PDF(3008 KB)

Accesses

Citation

Detail

Sections
Recommended

/