COORDINATED PRIMARY FREQUENCY REGULATION CONTROL STRATEGY OF WIND-THERMAL-STORAGE SYSTEM CONSIDERING OPERATION DIFFERENCE

Yang Tingting, Li Haoqian, Wu Xinyan, Liu Yu, Kang Jingqiu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 430-439.

PDF(4602 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4602 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 430-439. DOI: 10.19912/j.0254-0096.tynxb.2024-0220

COORDINATED PRIMARY FREQUENCY REGULATION CONTROL STRATEGY OF WIND-THERMAL-STORAGE SYSTEM CONSIDERING OPERATION DIFFERENCE

  • Yang Tingting1, Li Haoqian1, Wu Xinyan1, Liu Yu2, Kang Jingqiu3
Author information +
History +

Abstract

Given the differences between wind and thermal power in frequency regulation (the former is capable of rapid response while the latter possesses sustainable characteristics), this paper proposes a primary frequency regulation control strategy, which realizes efficient coordination among the two power sources and the energy storage system. Firstly, tailored to the diverse operational states of wind turbines in wind farms, a power distribution strategy based on a frequency regulation reserve factor is introduced, ensuring their safe and effective participation in frequency regulation. Moreover, a fuzzy control-based strategy for coordinating thermal and storage is designed to recover rotor speed. This strategy facilitates rapid and economical restoration of rotor speed, addressing the issue of secondary frequency drops in the system. Simulation results indicate that this strategy effectively achieves the coordinated primary frequency regulation of wind, thermal and storage systems, while ensuring economic benefit and reliability, which takes full advantage of the frequency regulation capacity of wind power, effectively improving the system's frequency characteristics.

Key words

wind power / frequency response / rotor kinetic energy / secondary frequency drop / rotate speed recovery

Cite this article

Download Citations
Yang Tingting, Li Haoqian, Wu Xinyan, Liu Yu, Kang Jingqiu. COORDINATED PRIMARY FREQUENCY REGULATION CONTROL STRATEGY OF WIND-THERMAL-STORAGE SYSTEM CONSIDERING OPERATION DIFFERENCE[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 430-439 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0220

References

[1] 陶骞, 贺颖, 潘杨, 等. 电力系统频率分布特征及改进一次调频控制策略研究[J]. 电力系统保护与控制, 2016, 44(17): 133-138.
TAO Q, HE Y, PAN Y, et al.Characteristics of power system frequency abnormal distribution and improved primary frequency modulation control strategy[J]. Power system protection and control, 2016, 44(17): 133-138.
[2] 杨蕾, 李胜男, 黄伟, 等. 考虑风光新能源参与二次调频的多源最优协同控制[J]. 电力系统保护与控制, 2020, 48(19): 43-49.
YANG L, LI S N, HUANG W, et al.Optimal coordinated control of multi-source for AGC with participation of wind and solar energy[J]. Power system protection and control, 2020, 48(19): 43-49.
[3] 盛四清, 俞可, 张文朝, 等. 大规模风电并网对送端系统功角稳定的影响研究[J]. 电力系统保护与控制, 2022, 50(6): 82-90.
SHENG S Q, YU K, ZHANG W C, et al.Influence of large-scale wind power grid connection on the power angle stability of the sending end system[J]. Power system protection and control, 2022, 50(6): 82-90.
[4] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
ZHANG L Y, YE T L, XIN Y Z, et al.Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[5] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646.
LIU J, YAO W, WEN J Y, et al.Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power system technology, 2014, 38(3): 638-646.
[6] HAFIZ F, ABDENNOUR A.Optimal use of kinetic energy for the inertial support from variable speed wind turbines[J]. Renewable energy, 2015, 80: 629-643.
[7] ALTIN M, HANSEN A D, BARLAS T K, et al.Optimization of short-term overproduction response of variable speed wind turbines[J]. IEEE transactions on sustainable energy, 2018, 9(4): 1732-1739.
[8] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE transactions on power systems, 2006, 21(1): 433-434.
[9] 许益恩, 杨德健, 郑太英, 等. 计及电网频率偏差的双馈风电机组频率控制策略[J]. 太阳能学报, 2022, 43(10): 229-235.
XU Y E, YANG D J, ZHENG T Y, et al.Frequency control strategy of doubly-fed wind generators considering grid frequency deviation[J]. Acta energiae solaris sinica, 2022, 43(10): 229-235.
[10] SIQI W, KEVIN T.A novel active power control framework for wind turbine generators to improve frequency response[J]. IEEE transactions on power systems, 2018, 33(6): 6579-6589.
[11] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716.
FU Y, WANG Y, ZHANG X Y, et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716.
[12] OBAID Z A, CIPCIGAN L M, ABRAHIM L, et al.Frequency control of future power systems: reviewing and evaluating challenges and new control methods[J]. Journal of modern power systems and clean energy, 2019, 7(1): 9-25.
[13] 陈鹏, 王玮, 杨建青, 等. 基于多尺度分解的风火储协同调频控制策略[J]. 太阳能学报, 2024, 45(3): 428-435.
CHEN P, WANG W, YANG J Q, et al.Cooperative frequency regulation control strategy of wind-thermal-storage system based on multi-scale decomposition[J]. Acta energiae solaris sinica, 2024, 45(3): 428-435.
[14] 李少林, 秦世耀, 王瑞明, 等. 大容量双馈风电机组虚拟惯量调频技术[J]. 电力自动化设备, 2018, 38(4): 145-150.
LI S L, QIN S Y, WANG R M, et al.Control strategy of virtual inertia frequency regulation for large capacity DFIG-based wind turbine[J]. Electric power automation equipment, 2018, 38(4): 145-150.
[15] 周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, 37(2): 486-496.
ZHOU T P, SUN W.Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, 37(2): 486-496.
[16] 冀肖彤, 江克证, 姚雅涵, 等. 计及风机运行状态差异的风电场频率协同支撑控制[J]. 电力自动化设备, 2024, 44(3): 98-104.
JI X T, JIANG K Z, YAO Y H, et al.Frequency collaborative support control of wind farm considering operation state difference of wind turbines[J]. Electric power automation equipment, 2024, 44(3): 98-104.
[17] 杨德健, 许益恩, 金朝阳, 等. 基于转矩极限的改进风电机组虚拟惯量控制策略[J]. 太阳能学报, 2023, 44(2): 80-86.
YANG D J, XU Y E, JIN Z Y, et al.Improved virtual inertia control strategy of wind turbine generators based on torque limit[J]. Acta energiae solaris sinica, 2023, 44(2): 80-86.
[18] 柯贤波, 张文朝, 李朋旺, 等. 高风电渗透率系统的模糊自适应虚拟惯量控制[J]. 电网技术, 2020, 44(6): 2127-2136.
KE X B, ZHANG W C, LI P W, et al.Fuzzy adaptive virtual inertia control for high wind power penetration system[J]. Power system technology, 2020, 44(6): 2127-2136.
[19] 盛四清, 占志刚, 吴林林, 等. 考虑频率二次跌落的风电机组调频控制研究[J]. 太阳能学报, 2023, 44(8): 485-491.
SHENG S Q, ZHAN Z G, WU L L, et al.Research on frequency regulation control of wind turbines considering secondary frequency drop[J]. Acta energiae solaris sinica, 2023, 44(8): 485-491.
[20] 颜湘武, 孙雪薇, 崔森, 等. 基于转子动能与超级电容器储能的双馈风电机组惯量和一次调频改进控制策略[J]. 电工技术学报, 2021, 36(S1): 179-190.
YAN X W, SUN X W, CUI S, et al.Improved control strategy for inertia and primary frequency regulation of doubly fed induction generator based on rotor kinetic energy and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 179-190.
[21] 商侨晏, 李凤婷, 王森, 等. 基于多变量模糊逻辑控制的风储联合系统一次调频策略[J]. 电网技术, 2023, 47(6): 2344-2360.
SHANG Q Y, LI F T, WANG S, et al.Primary frequency modulation strategy for wind-storage combined system based on multivariable fuzzy logic control[J]. Power system technology, 2023, 47(6): 2344-2360.
[22] 马德智, 栗文义, 温彩凤, 等. 基于双馈发电机组调频参与度的风/储协调一次调频控制策略[J]. 电网技术, 2023, 47(3): 968-979.
MA D Z, LI W Y, WEN C F, et al.Wind/storage coordinated primary frequency regulation control strategy based on participation level of DFIG units[J]. Power system technology, 2023, 47(3): 968-979.
[23] 颜全椿, 顾文, 范立新, 等. 储能协助风电机组参与电网调频控制策略研究[J]. 现代电力, 2022, 39(5): 537-546.
YAN Q C, GU W, FAN L X, et al.Energy storage assists wind turbines to participate in grid frequency regulation control strategy research[J]. Modern electric power, 2022, 39(5): 537-546.
[24] 李世春, 申骜, 程绪长, 等. 提升惯量响应与转速恢复的风储协调惯量控制方法[J]. 电网技术, 2023, 47(4): 1570-1580.
LI S C, SHEN A, CHENG X C, et al.Wind-storage coordinated inertia control for improving inertia response and rotor speed recovery[J]. Power system technology, 2023, 47(4): 1570-1580.
[25] 唐玉烽, 杨苹, 杨义. 考虑频率二次跌落的风电机组频率响应控制策略[J]. 电力系统自动化, 2023, 47(9): 166-174.
TANG Y F, YANG P, YANG Y.Frequency response control strategy of wind turbines considering frequency secondary drop[J]. Automation of electric power systems, 2023, 47(9): 166-174.
[26] 刘吉臻, 姚琦, 柳玉, 等. 风火联合调度的风电场一次调频控制策略研究[J]. 中国电机工程学报, 2017, 37(12): 3462-3469.
LIU J Z, YAO Q, LIU Y, et al.Wind farm primary frequency control strategy based on wind & thermal power joint control[J]. Proceedings of the CSEE, 2017, 37(12): 3462-3469.
[27] 颜湘武, 崔森, 宋子君, 等. 基于超级电容储能控制的双馈风电机组惯量与一次调频策略[J]. 电力系统自动化, 2020, 44(14): 111-120.
YAN X W, CUI S, SONG Z J, et al.Inertia and primary frequency regulation strategy of doubly-fed wind turbine based on super capacitor energy storage control[J]. Automation of electric power systems, 2020, 44(14): 111-120.
PDF(4602 KB)

Accesses

Citation

Detail

Sections
Recommended

/