STUDY OF EFFECT OF MECHANICAL STRESS ON TRANSPORT PROPERTIES OF FUEL CELL MICROPOROUS LAYERS

Zhang Heng, Shao Xuanyu, Wang Hu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 212-218.

PDF(2366 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2366 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 212-218. DOI: 10.19912/j.0254-0096.tynxb.2024-0230

STUDY OF EFFECT OF MECHANICAL STRESS ON TRANSPORT PROPERTIES OF FUEL CELL MICROPOROUS LAYERS

  • Zhang Heng1, Shao Xuanyu2, Wang Hu3
Author information +
History +

Abstract

This study first numerically reconstructs the microporous layer (MPL) in proton exchange membrane fuel cells (PEMFCs) to obtain its real microstructure. Then, the finite element method is employed to simulate the stress-strain behavior, as well as the distribution of porosity and pore size in the MPL, under different mechanical compression ratios. Finally, a pore-scale model is used to analyze the effect of mechanical compression on transport properties. The results show that as the mechanical compression ratio increases from 0 to 30%, the porosity and pore size of the MPL decrease by 20% and 45%, respectively. Meanwhile, the effective tortuosity, thermal conductivity, and electrical conductivity increase to 1.5, 1.6, and 1.7 times of their uncompressed values, respectively. When the compression ratio increases from 18% to 30%, its impact on effective transport properties is significantly greater than that observed in the 0-18% range. The optimal mechanical compression ratio for the MPL is approximately 18%.

Key words

proton exchange membrane fuel cells / microporous layer / compression ratio / transport properties / pore scale model

Cite this article

Download Citations
Zhang Heng, Shao Xuanyu, Wang Hu. STUDY OF EFFECT OF MECHANICAL STRESS ON TRANSPORT PROPERTIES OF FUEL CELL MICROPOROUS LAYERS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 212-218 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0230

References

[1] JIAO K, XUAN J, DU Q, et al.Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
[2] ZHANG J J, WANG B, JIN J H, et al.A review of the microporous layer in proton exchange membrane fuel cells: materials and structural designs based on water transport mechanism[J]. Renewable and sustainable energy reviews, 2022, 156: 111998.
[3] MEHRAZI S, SARKER M, MOJICA F, et al.A rheological approach to studying process-induced structural evolution of the microporous layer in a proton exchange membrane fuel cell[J]. Electrochimica acta, 2021, 389: 138690.
[4] 陈小松, 朱瑞杰, 宋浩, 等. 高电流密度下薄膜PEMFC自润湿特性研究[J]. 太阳能学报, 2023, 44(10): 564-571.
CHEN X S, ZHU R J, SONG H, et al.Study on self-humidifying properties of thin-membrane PEMFC at high current density[J]. Acta energiae solaris sinica, 2023, 44(10): 564-571.
[5] YIN Q N, GAO W T, ZHANG C, et al.The buffer microporous layer improved water management for proton exchange membrane fuel cell at varying humidification[J]. Journal of electroanalytical chemistry, 2023, 928: 117072.
[6] WU Y M, GARG S, LI M R, et al.Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO[J]. Journal of power sources, 2022, 522: 230998.
[7] WANG M L, HOU M, GAO Y Y, et al.Study of substrate-free microporous layer of proton exchange membrane fuel cells[J]. International journal of energy research, 2022, 46(7): 9782-9793.
[8] 王来华, 代世勋, 曹爱红. 基于实际工况的燃料电池水气传输及相变规律研究[J]. 太阳能学报, 2024, 45(3):260-268.
WANG L H, DAI S X, CAO A H.Research on fuel cell water and gas transmission and phase change law based on actual working conditions[J]. Acta energiae solaris sinica, 2024, 45(3): 260-268.
[9] 张恒, 詹志刚, 陈奔, 等. 基于XCT的气体扩散层传输特性孔尺度模拟[J]. 太阳能学报, 2023, 44(6): 99-105.
ZHANG H, ZHAN Z G, CHEN B, et al.Pore-scale simulation of gas diffusion layer transport characterics based on XCT[J]. Acta energiae solaris sinica, 2023, 44(6): 99-105.
[10] ZHANG H, RAHMAN M A, MOJICA F, et al.A comprehensive two-phase proton exchange membrane fuel cell model coupled with anisotropic properties and mechanical deformation of the gas diffusion layer[J]. Electrochimica acta, 2021, 382: 138273.
[11] MOSLEMI M, JAVAHERDEH K, ASHORYNEJAD H R.Effect of compression of microporous and gas diffusion layers on liquid water transport of PEMFC with interdigitated flow field by Lattice Boltzmann method[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2022, 642: 128623.
[12] CHEN Y C, KARAGEORGIOU C, ELLER J, et al.Determination of the porosity and its heterogeneity of fuel cell microporous layers by X-ray tomographic microscopy[J]. Journal of power sources, 2022, 539: 231612.
[13] DENG H, HOU Y Z, JIAO K.Lattice Boltzmann simulation of liquid water transport inside and at interface of gas diffusion and micro-porous layers of PEM fuel cells[J]. International journal of heat and mass transfer, 2019, 140: 1074-1090.
[14] YU Y, CHEN S, WEI H.Numerical study on the effect of microporous layer crack changes on water management in gas diffusion layer of proton exchange membrane fuel cell[J]. International journal of heat and mass transfer, 2023, 212:124275.
[15] EL HANNACH M, SINGH R, DJILALI N, et al.Micro-porous layer stochastic reconstruction and transport parameter determination[J]. Journal of power sources, 2015, 282: 58-64.
[16] BECKER J, WIESER C, FELL S, et al.A multi-scale approach to material modeling of fuel cell diffusion media[J]. International journal of heat and mass transfer, 2011, 54(7-8): 1360-1368.
[17] MOHSENINIA A, KARTOUZIAN D, EPPLER M, et al.Influence of structural modification of micro-porous layer and catalyst layer on performance and water management of PEM fuel cells: hydrophobicity and porosity[J]. Fuel cells, 2020, 20(4): 469-476.
[18] SEPE M, SATJARITANUN P, ZENYUK I V, et al.The impact of micro porous layer on liquid water evolution inside PEMFC using lattice Boltzmann method[J]. Journal of the Electrochemical Society, 2021, 168(7): 074507.
[19] SIM J, KANG M, MIN K, et al.Effect of capillary pressure gradient in microporous layer on proton exchange membrane fuel cell performance[J]. International journal of hydrogen energy, 2022, 47(40): 17762-17777.
[20] XU Y M, FAN R J, CHANG G F, et al.Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model[J]. Energy conversion and management, 2021, 248:114791.
[21] IRA Y, BAKHSHAN Y, KHORSHIDIMALAHMADI J.Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC[J]. International journal of hydrogen energy, 2021, 46(33): 17397-17413.
[22] HOU Y Z, LI X, DU Q, et al.Pore-scale investigation of the effect of micro-porous layer on water transport in proton exchange membrane fuel cell[J]. Journal of the Electrochemical Society, 2020, 167(14): 144504.
[23] ZHANG H, SHAO X Y, ZHAN Z G, et al.Pore-scale modeling of microporous layer for proton exchange membrane fuel cell: effective transport properties[J]. Membranes, 2023, 13(2): 219.
[24] XIAO L S, LUO M J, ZHANG H, et al.Solid mechanics simulation of reconstructed gas diffusion layers for PEMFCs[J]. Journal of the Electrochemical Society, 2019, 166(6): F377-F385.
[25] XU J, ZHU L J, XIAO L S, et al.A multiscale study on the effect of compression on lithium-ion battery separators[J]. Journal of energy storage, 2022, 54: 105255.
[26] ZHU L J, ZHANG H, XIAO L S, et al.Pore-scale modeling of gas diffusion layers: Effects of compression on transport properties[J]. Journal of power sources, 2021, 496: 229822.
[27] ZHANG H, ZHU L J, HARANDI H B, et al.Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties[J]. Energy conversion and management, 2021, 241: 114293.
[28] MILLICHAMP J, MASON T J, NEVILLE T P, et al.Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells-A review[J]. Journal of power sources, 2015, 284: 305-320.
[29] MOVAHEDI M, RAMIAR A, RANJBER A A.3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field[J]. Energy, 2018, 142: 617-632.
[30] SHOJAEEFARD M H, MOLAEIMANESH G R, NAZEMIAN M, et al.A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation[J]. International journal of hydrogen energy, 2016, 41(44): 20276-20293.
PDF(2366 KB)

Accesses

Citation

Detail

Sections
Recommended

/