STUDY ON FLUTTER PERFORMANCE OF ROOF FLEXIBLE PHOTOVOLTAIC SYSTEM BASED ON FLUID-SOLID COUPLING

Li Zhengnong, Xiao Bei, Zhong Min, Wu Honghua

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 614-622.

PDF(4275 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4275 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 614-622. DOI: 10.19912/j.0254-0096.tynxb.2024-0232

STUDY ON FLUTTER PERFORMANCE OF ROOF FLEXIBLE PHOTOVOLTAIC SYSTEM BASED ON FLUID-SOLID COUPLING

  • Li Zhengnong1, Xiao Bei1, Zhong Min2, Wu Honghua1
Author information +
History +

Abstract

In order to study the flutter performance of the flexible photovoltaic supports under the condition of roof wind field, based on the Ansys Fluent calculation platform, according to the measured results of a roof wind field, the simulation of the roof wind field is realized by embedding a custom function ( UDF ). The Newmark-β method is used to calculate the fluid-solid coupling of flexible photovoltaic modules in the range of 0°-40°. The simulation includes vertical and torsional degrees of freedom. It is found that the flexible photovoltaic module will also undergo vertical bending and torsional coupling vibration in the roof wind field environment, and this flutter form is self-limiting soft flutter. The inclination angle of the photovoltaic module has a significant effect on the flutter performance of the roof flexible photovoltaic system: within the inclination angle of the photovoltaic module of 0°-30°, the flutter critical wind speed decreases with the increase of the inclination angle; in the angle of 30°-40°, the flutter critical wind speed increases with the increase of the inclination angle. The spectrum analysis shows that with the increase of inclination angle, the proportion of torsional motion in coupled vibration increases gradually, and the proportion of torsional component in the range of 0°-40°inclination angle is 52.3%-74.2%. The flutter critical wind speed obtained from this analysis can provide reference for the region selection and parameter design of roof flexible photovoltaic system engineering construction.

Key words

PV modules / coupling / flutter / vibration analysis / flexible photovoltaic supports / roof wind field

Cite this article

Download Citations
Li Zhengnong, Xiao Bei, Zhong Min, Wu Honghua. STUDY ON FLUTTER PERFORMANCE OF ROOF FLEXIBLE PHOTOVOLTAIC SYSTEM BASED ON FLUID-SOLID COUPLING[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 614-622 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0232

References

[1] 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.
SHU Y B, ZHANG L Y, ZHANG Y Z, et al.Carbon peak and carbon neutrality path for China's power industry[J]. Strategic study of CAE, 2021, 23(6): 1-14.
[2] JING H Q, XIA Y, LI H, et al.Excitation mechanism of rain-wind induced cable vibration in a wind tunnel[J]. Journal of fluids and structures, 2017, 68: 32-47.
[3] NB/T 10115—2018, 光伏支架结构设计规程[S].
NB/T 10115—2018, Code for design of photovoltaic modules support structures[S].
[4] JGJ 257—2012, 索结构技术规程[S].
JGJ 257—2012, Technical specification for cable structures[S].
[5] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.
DU H, XU H W, ZHANG Y L, et al.Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin Institute of Technology, 2022, 54(10): 67-74.
[6] 陈权, 牛华伟, 李红星, 等. 基于气弹模型风洞试验的柔性光伏支架气动稳定性及干扰效应研究[J]. 建筑结构学报, 2023, 44(11): 153-161.
CHEN Q, NIU H W, LI H X, et al.Aerodynamic stability and interference effect on a flexible photovoltaic based on wind tunnel test with aeroelastic model[J]. Journal of building structures, 2023, 44(11): 153-161.
[7] 方媛, 何斌. 柔性绳索预拉力作用下太阳能光伏阵列流固耦合颤振特性仿真[C]//中国力学大会论文集(CCTAM 2019). 杭州, 中国, 2019: 2537-2548.
FANG Y, HE B.Fluid-solid coupling flutter characteristics simulation of solar photovoltaic arrays under PRE-tensioning of flexible ropes[C]//Proceedings of the Chinese Mechanics Conference (CCTAM 2019), Hangzhou, China, 2019: 2537-2548.
[8] HE X H, DING H, JING H Q, et al.Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104275.
[9] ZOU Q, LI Z N, ZENG X, et al.The analysis of characteristics of wind field on roof based on field measurement[J]. Energy and buildings, 2021, 240: 110877.
[10] 李寿英, 马杰, 刘佳琪, 等. 柔性光伏系统颤振性能的节段模型试验研究[J]. 土木工程学报, 2024, 57(2): 25-34.
LI S Y, MA J, LIU J Q, et al.Experimental study on flutter performance of flexible photovoltaic system by segmental model test[J]. China civil engineering journal, 2024, 57(2): 25-34.
[11] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[12] JTG/T3360-01—2018, 公路桥梁抗风设计规范[S].
JTG/T3360-01—2018, Wind-resistant design specification for highway bridges[S].
[13] 项海帆, 葛耀君, 朱乐东, 等. 现代桥梁抗风理论与实践[M]. 北京: 人民交通出版社, 2005.
XIANG H F, GE Y J, ZHU L D, et al.Modern theory and practice on bridge wind resistance[M]. Beijing: China Communications Press, 2005.
[14] 朱乐东, 高广中. 典型桥梁断面软颤振现象及影响因素[J]. 同济大学学报(自然科学版), 2015, 43(9): 1289-1294, 1382.
ZHU L D, GAO G Z.Influential factors of soft flutter phenomenon for typical bridge deck sections[J]. Journal of Tongji University (natural science), 2015, 43(9): 1289-1294, 1382.
[15] ABIOLA-OGEDENGBE A, HANGAN H, SIDDIQUI K.Experimental investigation of wind effects on a standalone photovoltaic (PV) module[J]. Renewable energy, 2015, 78: 657-665.
PDF(4275 KB)

Accesses

Citation

Detail

Sections
Recommended

/