BLADE LOAD TESTING AND IDENTIFICATION OF IN-SERVICE WIND TURBINES UNDER STEADY STATE CONDITIONS

Zhou Bo, Zhang Lixin, Bao Hongbing, Yu Zhiqiang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 597-606.

PDF(2440 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2440 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 597-606. DOI: 10.19912/j.0254-0096.tynxb.2024-0243

BLADE LOAD TESTING AND IDENTIFICATION OF IN-SERVICE WIND TURBINES UNDER STEADY STATE CONDITIONS

  • Zhou Bo1,2, Zhang Lixin2, Bao Hongbing3, Yu Zhiqiang3
Author information +
History +

Abstract

The problem of blade load testing and identification are discussed for onshore wind turbines operating under steady state conditions. Firstly, the load test scheme is designed based on the equivalent fatigue load theory and strain load measurement technology. According to the load measurement requirements, data acquisition, sensor layout and calibration are carried out to build the blade monitoring system. Secondly, the strain gauges are used in the blade monitoring system to obtain the test load under steady state conditions. In the blade monitoring system, the wind characteristic information from wind tower and radar is collected synchronously. At the same time, the wind turbine control state information is obtained by the SCADA system. The simulation load is obtained according to the wind speed capture matrix. Since the test load data duration is different from that of the design load, the design load, test load and simulation load are converted to equivalent fatigue load at 1Hz for comparison. The results show that the ratio of test load and design load of the same section is in the range of 104.0%-130.2%, which meets the safety margin of blade load design. The test load and simulation load of the same section are quite different, indicating that the dynamic change of load monitoring under steady state condition is strongly related to turbulence intensity. Therefore, it is necessary to monitor wind shear and turbulence parameters to reflect the actual load, which can prevent overload operation effectively.

Key words

wind turbine blades / load testing / strain measurement / steady state condition / equivalent fatigue load

Cite this article

Download Citations
Zhou Bo, Zhang Lixin, Bao Hongbing, Yu Zhiqiang. BLADE LOAD TESTING AND IDENTIFICATION OF IN-SERVICE WIND TURBINES UNDER STEADY STATE CONDITIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 597-606 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0243

References

[1] REN Z R, VERMA A S, LI Y, et al.Offshore wind turbine operations and maintenance: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2021, 144: 110886.
[2] DAI J C, LI M M, CHEN H G, et al.Progress and challenges on blade load research of large-scale wind turbines[J]. Renewable energy, 2022, 196: 482-496.
[3] NIELSEN J S, TCHERNIAK D, ULRIKSEN M D.A case study on risk-based maintenance of wind turbine blades with structural health monitoring[J]. Structure and infrastructure engineering, 2021, 17(3): 302-318.
[4] DU Y, ZHOU S X, JING X J, et al.Damage detection techniques for wind turbine blades: a review[J]. Mechanical systems and signal processing, 2020, 141: 106445.
[5] GARCÍA MÁRQUEZ F P, PECO CHACÓN A M. A review of non-destructive testing on wind turbines blades[J]. Renewable energy, 2020, 161: 998-1010.
[6] 高峰, 张鸿, 许琳, 等. 风电机组叶片故障仿真与状态判别研究[J]. 太阳能学报, 2023, 44(4): 52-59.
GAO F, ZHANG H, XU L, et al.Research on fault simulation and state judgment of wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(4): 52-59.
[7] LIU P F, XU D, LI J G, et al.Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning[J]. Structural health monitoring, 2020, 19(4): 1092-1103.
[8] CHANDRASEKHAR K, STEVANOVIC N, CROSS E J, et al.Damage detection in operational wind turbine blades using a new approach based on machine learning[J]. Renewable energy, 2021, 168: 1249-1264.
[9] DAO C D, KAZEMTABRIZI B, CRABTREE C J, et al.Integrated condition-based maintenance modelling and optimisation for offshore wind turbines[J]. Wind energy, 2021, 24(11): 1180-1198.
[10] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[11] 陈雪峰, 杨志勃, 田绍华, 等. 复合材料结构损伤识别与健康监测展望[J]. 振动测试与诊断, 2018, 38(1): 1-10, 202.
CHEN X F, YANG Z B, TIAN S H, et al.A review of the damage detection and health monitoring for composite structures[J]. Journal of vibration, measurement & diagnosis, 2018, 38(1): 1-10, 202.
[12] SIERRA-PÉREZ J, TORRES-ARREDONDO M A, GÜEMES A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition FBGs, OBR and strain gauges comparison[J]. Composite structures, 2016, 135: 156-166.
[13] MOYNIHAN B, MOAVENI B, LIBERATORE S, et al.Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification[J]. Renewable energy, 2022, 184: 662-676.
[14] MYLONAS C, ABDALLAH I, CHATZI E.Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data[J]. Wind energy, 2021, 24(10): 1122-1139.
[15] ZHU P Y, FENG X B, LIU Z, et al.Reliable packaging of optical fiber Bragg grating sensors for carbon fiber composite wind turbine blades[J]. Composites science and technology, 2021, 213: 108933.
[16] 王超, 戴巨川, 杨鑫, 等. 基于“应变-载荷” 模型的大型风电机组叶片载荷识别研究[J]. 太阳能学报, 2019, 40(5): 1423-1432.
WANG C, DAI J C, YANG X, et al.Research on blade load identification of large-scale wind turbinesbased on“stress-load” model[J]. Acta energiae solaris sinica, 2019, 40(5): 1423-1432.
[17] 李德顺, 胡渊, 李仁年, 等. 强湍流相干结构对偏航风力机叶根载荷的影响[J]. 农业工程学报, 2020, 36(20): 102-109.
LI D S, HU Y, LI R N, et al.Effects of strong turbulence structure coherent on load of blade root in a yaw wind turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 102-109.
[18] KAEWNIAM P, CAO M S, ALKAYEM N F, et al.Recent advances in damage detection of wind turbine blades: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2022, 167: 112723.
[19] IEC/TS 61400-13,Wind turbine generator systems-part 13: measurement of mechanical loads[S].
[20] JB/T 25383—2010, 风力发电机组-风轮叶片[S].
JB/T 25383-2010, Wind power generation unit-wind turbine blades[S].
PDF(2440 KB)

Accesses

Citation

Detail

Sections
Recommended

/