RESEARCH ON ACTIVE FREQUENCY SUPPORT FOR GRID-FORMING FLEXIBLE DIRECT RECEIVING END CONVERTER STATION BASED ON MODEL PREDICTIVE CONTROL

Sun Chengzhang, Ren Yongfeng, Yun Pingping, Mi Yue, Fang Chenzhi, He Bin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 401-409.

PDF(2421 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2421 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 401-409. DOI: 10.19912/j.0254-0096.tynxb.2024-0251

RESEARCH ON ACTIVE FREQUENCY SUPPORT FOR GRID-FORMING FLEXIBLE DIRECT RECEIVING END CONVERTER STATION BASED ON MODEL PREDICTIVE CONTROL

  • Sun Chengzhang1, Ren Yongfeng1, Yun Pingping2, Mi Yue2, Fang Chenzhi1, He Bin1
Author information +
History +

Abstract

This paper addresses the issue of insufficient active frequency support and regulation capabilities at the receiving converter stations of flexible direct current transmission systems. A control strategy based on model predictive control (MPC) for grid-forming modular multilevel converters (MMC) is proposed. Firstly, the paper introduces the principle of frequency support for grid-forming MMCs. Subsequently, the MPC algorithm is integrated into the traditional droop control to overcome the inherent limitations of secondary frequency regulation in conventional droop control. This control method generates real-time optimal control functions that indirectly enable the dynamic adjustment of the droop coefficient, thus allowing the system frequency to stably track the setpoint and achieve the effect of secondary frequency regulation. Finally, time-domain simulations conducted on the Matlab/Simulink software platform validate the feasibility and effectiveness of the proposed control strategy.

Key words

power electronics / model predictive control / HVDC power transmission / virtual synchronous generator VSG / secondary frequency modulation

Cite this article

Download Citations
Sun Chengzhang, Ren Yongfeng, Yun Pingping, Mi Yue, Fang Chenzhi, He Bin. RESEARCH ON ACTIVE FREQUENCY SUPPORT FOR GRID-FORMING FLEXIBLE DIRECT RECEIVING END CONVERTER STATION BASED ON MODEL PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 401-409 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0251

References

[1] WANG Y J, WANG R, TANAKA K, et al.Accelerating the energy transition towards photovoltaic and wind in China[J]. Nature, 2023, 619(7971): 761-767.
[2] GUO X S, LOU S H, CHEN Z, et al.Flexible operation of integrated energy system with HVDC infeed considering multi-retrofitted combined heat and power units[J]. Applied energy, 2022, 325: 119833.
[3] 曹帅, 刘东, 赵成功. 适用于风电经柔性直流并网系统的柔性耗能装置及控制策略[J]. 电力系统保护与控制, 2022, 50(23): 51-62.
CAO S, LIU D, ZHAO C G.A flexible energy dissipation device with control strategy for an HVDC wind power integration system[J]. Power system protection and control, 2022, 50(23): 51-62.
[4] 郑涛, 李紫肖, 陈颖. 基于换流站不同出线低频暂态能量比值的多端柔直电网线路保护方案[J]. 电力系统保护与控制, 2023, 51(24): 1-12.
ZHENG T, LI Z X, CHEN Y.Protection scheme for a multi-terminal flexible DC grid line based on low frequency transient energy ratios of different outgoing lines at the converter station[J]. Power system protection and control, 2023, 51(24): 1-12.
[5] 马秀达, 卢宇, 田杰, 等. 柔性直流输电系统的构网型控制关键技术与挑战[J]. 电力系统自动化, 2023, 47(3): 1-11.
MA X D, LU Y, TIAN J, et al.Key technologies and challenges of grid-forming control for flexible DC transmission system[J]. Automation of electric power systems, 2023, 47(3): 1-11.
[6] 张宇, 张琛, 蔡旭, 等. 虚拟同步机电流受限暂态电压支撑机理与改进故障穿越控制研究[J]. 中国电机工程学报, 2024,44(15): 5996-6010.
ZHANG Y, ZHANG C, CAI X, et al.Current-constrained transient voltage response analysis and an improved fault-ride through control of the virtual synchronous generator[J]. Proceedings of the CSEE, 2024, 44(15): 5996-6010.
[7] 薛阳, 黄薪操, 席东翔, 等. 基于叠加频率的直流微电网改进下垂控制策略研究[J]. 太阳能学报, 2022, 43(9): 461-467.
XUE Y, HUANG X C, XI D X, et al.Research on improved droop control strategy of DC microgrid based on superimposed frequency[J]. Acta energiae solaris sinica, 2022, 43(9): 461-467.
[8] 吴青峰, 褚晓林, 于少娟, 等. 基于改进型P-E下垂控制的低压交流微电网不同容量储能单元SOC均衡策略[J]. 太阳能学报, 2023, 44(4): 266-275.
WU Q F, CHU X L, YU S J, et al.SOC balancing strategy of low voltage AC microgrids with different capacities base on improved P-E droop control[J]. Acta energiae solaris sinica, 2023, 44(4): 266-275.
[9] 杨红品, 袁至, 王维庆, 等. 虚拟同步发电机技术控制的MMC型固态变压器[J]. 太阳能学报, 2022, 43(9): 478-487.
YANG H P, YUAN Z, WANG W Q, et al.MMC-type solid state transformer controlled by virtual synchronous generator technology[J]. Acta energiae solaris sinica, 2022, 43(9): 478-487.
[10] 姚为正, 杨美娟, 张海龙, 等. VSC-HVDC受端换流器参与电网调频的VSG控制及其改进算法[J]. 中国电机工程学报, 2017, 37(2): 525-534.
YAO W Z, YANG M J, ZHANG H L, et al.VSG control and its modified algorithm for VSC-HVDC inverter participating grid's frequency regulation[J]. Proceedings of the CSEE, 2017, 37(2): 525-534.
[11] 张纯江, 曾松林, 庆宏阳, 等. 基于改进自恢复下垂控制的储能逆变器多维度优化控制[J]. 电网技术, 2023, 47(12): 5193-5207.
ZHANG C J, ZENG S L, QING H Y, et al.Multi-dimensional optimization control of energy storage inverter based on improved self-recovery droop control[J]. Power system technology, 2023, 47(12): 5193-5207.
[12] 王浩, 陈纪凯, 李斌, 等. 基于改进下垂控制的直流微电网大扰动稳定性分析[J]. 电力系统及其自动化学报, 2023, 35(12): 1-11.
WANG H, CHEN J K, LI B, et al.Large-disturbance stability analysis of DC microgrid based on improved droop control[J]. Proceedings of the CSU-EPSA, 2023, 35(12): 1-11.
[13] FERAHTIA S, DJEROUI A, REZK H, et al.Optimal control and implementation of energy management strategy for a DC microgrid[J]. Energy, 2022, 238: 121777.
[14] 张芳, 姚文鹏, 张紫菁. 基于广义特征根的MMC-HVDC系统高频振荡分析及抑制策略[J]. 电力自动化设备, 2022, 42(8): 174-183.
ZHANG F, YAO W P, ZHANG Z J.High-frequency oscillation analysis and suppression strategy of MMC-HVDC system based on generalized eigenvalue[J]. Electric power automation equipment, 2022, 42(8): 174-183.
[15] 倪泽龙, 林钰钧, 王治涛, 等. 基于模型预测的虚拟同步机控制储能调频研究[J]. 电力系统保护与控制, 2022, 50(14): 85-93.
NI Z L, LIN Y J, WANG Z T, et al.Research on frequency regulation of VSG controlled energy storages based on model predictive control[J]. Power system protection and control, 2022, 50(14): 85-93.
[16] 马文忠, 刘晓丽, 王玉生, 等. 基于直流电压动态修正的柔性多状态开关自适应下垂控制[J]. 高电压技术, 2024, 50(6): 2673-2681.
MA W Z, LIU X L, WANG Y S, et al.Adaptive droop control of flexible multi-state switch based on DC voltage dynamic correction[J]. High voltage engineering, 2024, 50(6): 2673-2681.
[17] LONG B, LIAO Y, CHONG K T, et al.MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids[J]. IEEE transactions on smart grid, 2021, 12(2): 953-964.
[18] 束洪春, 邵宗学, 赵伟, 等. 含柔性直流的交直流混联电力系统紧急频率控制研究[J]. 电工技术学报, 2023, 38(20): 5590-5604.
SHU H C, SHAO Z X, ZHAO W, et al.Research on emergency power control of AC-DC hybrid power system with flexible DC[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5590-5604.
[19] 陈建, 任永峰, 孟庆天, 等. 含UDE附加阻尼支路的构网型直驱永磁同步风电机组次同步振荡抑制策略[J]. 电工技术学报, 2024, 39(7): 1985-2000.
CHEN J, REN Y F, MENG Q T, et al.Sub-synchronous oscillation suppression strategy for grid-forming direct-drive permanent magnet synchronous generator with uncertainty and disturbance estimator supplementary damping branch[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 1985-2000.
[20] 李帅虎, 向丽珍, 向振宇, 等. 用于改善VSG频率响应的模型预测控制方法[J]. 高电压技术, 2021, 47(8): 2856-2864.
LI S H, XIANG L Z, XIANG Z Y, et al.MPC control method for improving VSG frequency response[J]. High voltage engineering, 2021, 47(8): 2856-2864.
[21] 王开让, 赵一名, 孟建辉, 等. 基于自适应模型预测控制的光储虚拟同步机平滑并网策略[J]. 高电压技术, 2023, 49(2): 831-839.
WANG K R, ZHAO Y M, MENG J H, et al.Smooth grid-connected strategy for photovoltaic-storage virtual synchronous generator based on adaptive model predictive control[J]. High voltage engineering, 2023, 49(2): 831-839.
[22] 肖迁, 陆文标, 贾宏杰, 等. 改进下垂控制下的中压直流配电系统双时间尺度分层调控方法[J]. 中国电机工程学报, 2024, 44(7): 2507-2519.
XIAO Q, LU W B, JIA H J, et al.Dual-time-scale hierarchical regulation and control for medium-voltage DC distribution system under improved droop control[J]. Proceedings of the CSEE, 2024, 44(7): 2507-2519.
PDF(2421 KB)

Accesses

Citation

Detail

Sections
Recommended

/