OPTIMAL SCHEDULING OF ACTIVE POWER FOR WIND FARMS BASED ON STATE EVALUATION OF WIND TURBINES UNDER POWER-LIMIT MODE

Wei Shangshang, Ying Xiarong, Gao Yansong, Wang Wei, Xu Chang, Huo Zhihong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 506-516.

PDF(2138 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2138 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (11) : 506-516. DOI: 10.19912/j.0254-0096.tynxb.2024-0259

OPTIMAL SCHEDULING OF ACTIVE POWER FOR WIND FARMS BASED ON STATE EVALUATION OF WIND TURBINES UNDER POWER-LIMIT MODE

  • Wei Shangshang, Ying Xiarong, Gao Yansong, Wang Wei, Xu Chang, Huo Zhihong
Author information +
History +

Abstract

In view of the power-limit operation mode of wind farms, an optimal scheduling method of active power for wind farms based on state evaluation of wind turbines is proposed to achieve optimization control of wind farms with lower computational complexity. Firstly, various indicators in the comprehensive evaluation system of wind turbines are defined, and the deterioration degree of power increase/decrease for the turbines is calculated using the fuzzy entropy method for ranking. Subsequently, the turbines are classified in detail according to their generating states, and the power regulation capabilities of each turbine are determined. Then, based on the classification and ranking of wind turbines, optimal scheduling of active power for a wind farm is implemented. Finally, the proposed optimal scheduling method is simulated and tested based on historical data from a specific wind farm. The results show that the proposed method can achieve high accuracy for power command tracking under different power-limit degrees of wind farms . Meanwhile, the power scheduling based on the comprehensive deterioration degree of turbines can effectively reduce the variation of power fluctuation and load fatigue of turbines, as well as the overall power fluctuation of wind farms.

Key words

wind farm / power control / scheduling algorithms / fuzzy entropy method / comprehensive rating / turbine status classification / load fatigue

Cite this article

Download Citations
Wei Shangshang, Ying Xiarong, Gao Yansong, Wang Wei, Xu Chang, Huo Zhihong. OPTIMAL SCHEDULING OF ACTIVE POWER FOR WIND FARMS BASED ON STATE EVALUATION OF WIND TURBINES UNDER POWER-LIMIT MODE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 506-516 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0259

References

[1] 张彬彬. 风电场有功功率优化分配及其控制[D]. 西安: 西安理工大学, 2020.
ZHANG B B.Optimal distribution and control of active power in wind farm[D]. Xi’an: Xi’an University of Technology, 2020.
[2] 李垚. 大型风电机组系统可靠性评估与分配研究[D]. 重庆: 重庆大学, 2020.
LI Y.Study on reliability evaluation and distribution of large wind turbine system[D]. Chongqing: Chongqing University, 2020.
[3] 王瑞珈. 基于改进云模型的风电机组运行状态综合评价[D]. 北京: 华北电力大学, 2021.
WANG R J.Comprehensive evaluation of wind turbine operation state based on improved cloud model[D]. Beijing: North China Electric Power University, 2021.
[4] 李进友, 李媛, 冯冰, 等. 基于随机组合赋权模糊评价的风电机组健康状态评估[J]. 太阳能学报, 2022, 43(8): 340-351.
LI J Y, LI Y, FENG B, et al.Wind turbine health state assessment based on stochastic combination weighting fuzzy evaluation[J]. Acta energiae solaris sinica, 2022, 43(8): 340-351.
[5] 王丹彤. 基于状态劣化模型的风电机组设备预防性维修策略研究[D]. 兰州: 兰州交通大学, 2021.
WANG D T.Research on preventive maintenance strategy of wind turbine equipment based on condition deterioration model[D]. Lanzhou: Lanzhou Jiatong University, 2021.
[6] 李茜, 毛雅铃, 王武双, 等. 基于动态机组分类的风电场优化调度[J]. 太阳能学报, 2021, 42(6): 419-424.
LI Q, MAO Y L, WANG W S, et al.Optimal scheduling of wind farms based on dynamic wind turbine clustering[J]. Acta energiae solaris sinica, 2021, 42(6): 419-424.
[7] 程雪婷, 张家瑞, 刘新元, 等. 考虑风机排序的风电集群分层有功控制策略[J]. 电力工程技术, 2021, 40(2): 26-32, 85.
CHENG X T, ZHANG J R, LIU X Y, et al.Hierarchical active control of wind power cluster considering ordered wind turbines[J]. Electric power engineering technology, 2021, 40(2): 26-32, 85.
[8] 赵靖英, 门孝伟, 姚帅亮. 基于风电机组聚类的风电场有功分层分配策略[J]. 太阳能学报, 2023, 44(12): 306-315.
ZHAO J Y, MEN X W, YAO S L.Hierarchical active power distribution strategy of wind farms based on wind turbines clustering[J]. Acta energiae solaris sinica, 2023, 44(12): 306-315.
[9] DE SIMÓN-MARTÍN M, CIRIA-GARCÉS T, ROSALES-ASENSIO E, et al. Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach[J]. Renewable and sustainable energy reviews, 2022, 161: 112387.
[10] SONG M Q, HUANG S F, MO C F, et al.Uncertainty and sensitivity analysis of iodine release in severe accidents of advanced pressurized water reactors based on the Latin Hypercube method and Grey Correlation Coefficients[J]. Nuclear engineering and design, 2023, 412: 112450.
[11] TONIN F, TAO Q H, PATRINOS P, et al.Deep kernel principal component analysis for multi-level feature learning[J]. Neural networks, 2024, 170: 578-595.
[12] NIE Y N, LIU W Y, XU C L.Comprehensive evaluation of active power control effect of wind power cluster based on AHP and fuzzy evaluation method[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China, 2019: 624-628.
[13] 胡铭洋, 高红均, 王程, 等. 面向多微网协调交易的多方共治决策方法[J]. 电力系统自动化, 2022, 46(13): 30-42.
HU M Y, GAO H J, WANG C, et al.Multi-party co-governance decision-making method for coordinated transactions among multiple microgrids[J]. Automation of electric power systems, 2022, 46(13): 30-42.
[14] 马丽叶, 张涛, 卢志刚, 等. 基于变权可拓云模型的区域综合能源系统综合评价[J]. 电工技术学报, 2022, 37(11): 2789-2799.
MA L Y, ZHANG T, LU Z G, et al.Comprehensive evaluation of regional integrated energy system based on variable weight extension cloud model[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2789-2799.
[15] LUO K, SHI W H, WANG W S.Extreme scenario extraction of a grid with large scale wind power integration by combined entropy-weighted clustering method[J]. Global energy interconnection, 2020, 3(2): 140-148.
[16] ZHANG H Y, CHEN C, YIN X Q, et al.Comprehensive evaluation method of power quality CRITIC-MARCOS for regional distribution network[C]//Lecture Notes in Electrical Engineering. Singapore: Springer Nature Singapore, 2023: 377-389.
[17] 邓智文, 郭苏, 许昌, 等. 海上风电场功率提升和疲劳平衡综合优化控制[J]. 太阳能学报, 2021, 42(1): 180-186.
DENG Z W, GUO S, XU C, et al.Comprehensive optimization control of power boost and fatigue balance for offshore wind farms[J]. Acta energiae solaris sinica, 2021, 42(1): 180-186.
[18] 刘军, 赵航, 刘安东. 基于机组分类的风电场有功功率分配方法研究[J]. 太阳能学报, 2023, 44(8): 396-403.
LIU J, ZHAO H, LIU A D.Study on active power distribution method of wind farm based on unit classification[J]. Acta energiae solaris sinica, 2023, 44(8): 396-403.
PDF(2138 KB)

Accesses

Citation

Detail

Sections
Recommended

/