BLADES FLUTTER SUPER-LARGE WIND TURBINES: A REVIEW

Liao Weiliang, Zhang Mingming, Yang Jianjun, Fan Youhua, Deng Yanfei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 556-566.

PDF(3161 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3161 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 556-566. DOI: 10.19912/j.0254-0096.tynxb.2024-0274

BLADES FLUTTER SUPER-LARGE WIND TURBINES: A REVIEW

  • Liao Weiliang1, Zhang Mingming1, Yang Jianjun2, Fan Youhua3, Deng Yanfei1
Author information +
History +

Abstract

Wind power generation, as the third-largest electricity supply mode in China, plays a crucial role in adjusting the national energy structure and achieving the "dual carbon" goal. With the rapid development of wind turbines in recent years, the trend towards larger turbines has become increasingly prominent due to factors such as cost reduction and achieving grid parity. However, the increased flexibility of blades has led to intensified flutter, resulting in a series of issues such as increased blade fatigue and reduced unit lifespan. Research on flutter suppression in super large wind turbines is essential for the sustainable development of the wind power industry. This paper summarizes the development history and current research status of various flutter suppression technologies for wind turbine blades, analyzes the impact of flutter on the safety and performance of wind turbines, introduces the characteristics, application scope, and improvement degree of different flutter suppression technologies on the dynamic response and stability of wind turbines, and summarizes the main research results and existing challenges. The future research direction is also proposed, providing a reference for the sustainable development of flutter suppression research and the large-scale development of wind turbines

Key words

large wind turbine / long flexible blade / aeroelastic stability / flutter suppression / active control / passive control

Cite this article

Download Citations
Liao Weiliang, Zhang Mingming, Yang Jianjun, Fan Youhua, Deng Yanfei. BLADES FLUTTER SUPER-LARGE WIND TURBINES: A REVIEW[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 556-566 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0274

References

[1] United Nations Network. Transforming our world: the2030 agenda for sustainable development[EB/OL]. https://sdgs.un.org/2030agenda.
[2] 赵丽军, 张璠, 厉伟, 等. 风电机组风轮不平衡机械载荷时域特性分析[J]. 太阳能学报, 2020, 41(8): 342-350.
ZHAO L J, ZHANG F, LI W, et al.Analysis on time domain characteristics of imbalanced mechanical loads of wind turbine rotor[J]. Acta energiae solaris sinica, 2020, 41(8): 342-350.
[3] International Energy Agency Network. Renewables 2020 Analysis and Forecast to 2025[EB/OL]. https://www.iea.org/reports/renewables-2020.
[4] National Energy Administration. Notification of the National Energy Administration on the monitoring and evaluation results of the national renewable energy power development in2022. [EB/OL].http://zfxxgk.nea.gov.cn/2023-09/07/c_1310741874.htm.
[5] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
WEN B R, TIAN X L, LI Z W, et al.Coupling dynamics of floating wind turbines: history, progress and challenges[J]. Advances in mechanics, 2022, 52(4): 731-808.
[6] 潘月月, 李正农, 张雨坤, 等. 基于实测风场的沿海风力机叶片流固耦合特性分析[J]. 太阳能学报, 2023, 44(12): 330-340.
PAN Y Y, LI Z N, ZHANG Y K, et al.Analysis of fluid-structure coupling characteristics of coastal wind turbine bladeds based on measured wind field[J]. Acta energiae solaris sinica, 2023, 44(12): 330-340.
[7] 李贝, 田德, 唐世泽, 等. 超大型风电机组叶片颤振分析及参数灵敏度研究[J]. 太阳能学报, 2023, 44(9): 295-301.
LI B, TIAN D, TANG S Z, et al.Flutter analysis and parameter sensitivity study of ultra-large wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(9): 295-301.
[8] 孙仕林, 王天杨, 褚福磊. 基于振动及声学测量的风电叶片结构健康监测研究综述[J]. 机械工程学报, 2024, 60(7): 79-92.
SUN S L,WANG T Y,CHU F L,et al.Review of structural health monitoring of wind turbine blades based on vibration and acoustic measurement[J]. Journal of mechanical engineering, 2024, 60(7): 79-92.
[9] 马伟栋, 高丙朋, 杨武帮, 等. 引入权值修正预测控制的风电叶片自适应组合抑振策略研究[J]. 太阳能学报, 2022, 43(8): 382-390.
MA W D, GAO B P, YANG W B, et al.Research on adaptive combined vibration suppression strategy of wind power blade based on weight modified predictive control[J]. Acta energiae solaris sinica, 2022, 43(8): 382-390.
[10] XIE F, ALY A M.Structural control and vibration issues in wind turbines: a review[J]. Engineering structures, 2020, 210: 110087.
[11] WANG W J, XUE Y, HE C K, et al.Review of the typical damage and damage-detection methods of large wind turbine blades[J]. Energies, 2022, 15(15): 5672.
[12] 杨景云, 王文韫, 戴巨川. 基于摄动模态分析的风电叶片动力学特性研究[J]. 太阳能学报, 2023, 44(11): 231-238.
YANG J Y, WANG W Y, DAI J C.Research on dynamic characteristics of wind power blades based on perturbation mode analysis[J]. Acta energiae solaris sinica, 2023, 44(11): 231-238.
[13] 陈吉朋, 王计安, 张雨秋, 等. 废弃风电叶片材料回收与再制造技术的研究进展[J]. 太阳能学报, 2023, 44(5): 328-335.
CHEN J P, WANG J A, ZHANG Y Q, et al.Progress on recycling methods and remanufacturing technology of waste wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(5): 328-335.
[14] LI J J, SUN Z Y, WEN C Y, et al.Prescribed-time tracking control for wind turbines in variable speed mode with guaranteed performance[J]. IEEE transactions on industrial electronics, 2024: 1-9.
[15] LÓPEZ-QUEIJA J, ROBLES E, JUGO J, et al. Review of control technologies for floating offshore wind turbines[J]. Renewable and sustainable energy reviews, 2022, 167: 112787.
[16] ZUO H R, BI K M, HAO H.A state-of-the-art review on the vibration mitigation of wind turbines[J]. Renewable and sustainable energy reviews, 2020, 121: 109710.
[17] 秦文宇. 风力机叶片振动抑制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
QIN W Y.Vibration suppression method of wind turbine blade[D]. Harbin: Harbin Institute of Technology, 2022.
[18] ZUO H R, BI K, HAO H.Mitigation of tower and out-of-plane blade vibrations of offshore monopile wind turbines by using multiple tuned mass dampers[J]. Structure and infrastructure engineering, 2019, 15(2): 269-284
[19] 曾令旗. 基于形状记忆合金的大型风力机复合材料叶片振动被动控制研究[D]. 青岛: 青岛科技大学, 2021.
ZENG L Q.Study on passive vibration control of composite blade of large wind turbine based on shape memory alloy[D]. Qingdao: Qingdao University of Science & Technology, 2021.
[20] ZHANG Z L, LI J, NIELSEN S R K, et al. Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers[J]. Journal of sound vibration, 2014, 333(21): 5283-5298.
[21] BASU B, ZHANG Z L, NIELSEN S R K. Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers[J]. Wind energy, 2016, 19(2): 213-226.
[22] ZHANG Z L, FITZGERALD B.Tuned mass-damper-inerter (TMDI) for suppressing edgewise vibrations of wind turbine blades[J]. Engineering structures, 2020, 221: 110928.
[23] LI W R, YAN S B, LI G G, et al.Mitigation of in-plane vibrations in large-scale wind turbine blades with a track tuned mass damper[J]. Structural control and health monitoring, 2023, 2023: 8645831.
[24] BOUDOUNIT H, TARFAOUI M, SAIFAOUI D.Modal analysis for optimal design of offshore wind turbine blades[J]. Materials today: proceedings, 2020, 30: 998-1004.
[25] JIANG X, JIANG Y M, ZHAO K, et al.Comparative study on vibration characteristics of biaxial carbon/glass hybrid wind turbine blades[J]. Applied sciences, 2023, 13(17): 9846.
[26] ZHENG X, YAO Y, HU Z H, et al.Influence of turbulence intensity on the aerodynamic performance of wind turbines based on the fluid-structure coupling method[J]. Applied sciences, 2022, 13(1): 250.
[27] TORREGROSA A J, GIL A, QUINTERO P, et al.On the effects of orthotropic materials in flutter protection of wind turbine flexible blades[J]. Journal of wind engineering & industrial aerodynamics, 2022, 227: 249592380.
[28] ZHENG Y Q, MA H D, WEI J F, et al. Robust optimization for composite blade of wind turbine based on Kriging model[J]. Advanced composites letters, 2020, 29: 2633366X2091463.
[29] SERAFEIM G P, MANOLAS D I, RIZIOTIS V A, et al.Optimized blade mass reduction of a 10 MW-scale wind turbine via combined application of passive control techniques based on flap-edge and bend-twist coupling effects[J]. Journal of wind engineering and industrial aerodynamics, 2022, 225: 105002.
[30] WU H X, KE S T, LU M M, et al.Research on vibration suppression effect and energy dissipation mechanism of wind turbine piezoelectric blade[J]. Journal of fluids and structures, 2023, 117: 103814.
[31] 曾令旗, 孙双双, 王永哲. 基于SMA的大型风力机叶片振动被动控制研究[J]. 太阳能学报, 2022, 43(12): 227-235.
ZENG L Q, SUN S S, WANG Y Z.Passive vibration control of large wind turbine blades based on SMA[J]. Acta energiae solaris sinica, 2022, 43(12): 227-235.
[32] DAS S, MOHAMED SAJEER M, CHAKRABORTY A, et al.Shape memory alloy-based centrifugal stiffening for response reduction of horizontal axis wind turbine blade[J]. Structural control and health monitoring, 2021, 28(3): e2669.
[33] SAJEER M, MITRA A, CHAKRABORTY A.Spinning finite element analysis of longitudinally stiffened horizontal axis wind turbine blade for fatigue life enhancement[J]. Mechanical systems and signal processing, 2020, 145: 106924.
[34] AWADA A, YOUNES R, ILINCA A.Review of vibration control methods for wind turbines[J]. Energies, 2021, 14(11): 3058.
[35] PARRA H G, CERON H D, GOMEZ W, et al.Experimental analysis of bio-inspired vortex generators on a blade with S822 airfoil[J]. Energies, 2023, 16(12): 4538.
[36] CHANG L, YU Y, LIU T.Aeroelastic vibration analysis of wind turbine blade with Gurney flap[J]. Proceedings of the Institution of Mechanical Engineers, part C: journal of mechanical engineering science, 2021, 235(20): 4913-4925.
[37] ZHANG Y N, ZHANG M M, CAI C, et al.Aerodynamic load control on a dynamically pitching wind turbine airfoil using leading-edge protuberance method[J]. Acta mechanica sinica, 2020, 36(2): 275-289.
[38] CHEN T, JIANG X, WANG H P, et al.Investigation of leading-edge slat on aerodynamic performance of wind turbine blade[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2021, 235(8): 1329-1343.
[39] CAO H J, ZHOU T, ZHANG Y N, et al.An experimental investigation of aerodynamic and aeroacoustic performance of a wind turbine airfoil with trailing edge serrations[J]. The journal of the Acoustical Society of America, 2022, 151(2): 1211.
[40] 张洪宁. 风力机多层阻尼叶片抑颤性能分析[D]. 太原: 太原科技大学, 2017.
ZHANG H N.Flutter-suppressing analysis of multilayer damping structural blade for wind turbine[D]. Taiyuan: Taiyuan University of Science and Technology, 2017.
[41] MENG J, SUN D G.Research on vibration suppression of wind turbine blade based on bamboo wall three-layer damping structure[J]. Journal of vibroengineering, 2017, 19(1): 87-99.
[42] SUN D G, GUO J J, SONG Y, et al.Flutter stability analysis of a perforated damping blade for large wind turbines[J]. Journal of sandwich structures & materials, 2019, 21(3): 973-989.
[43] 杨伟. 大型风力机阻尼叶片抑颤研究[D]. 兰州: 兰州理工大学, 2021.
YANG W.Study on damping blade vibration suppression of large wind turbine[D].Lanzhou: Lanzhou University of Technology, 2021.
[44] NOVAES MENEZES E J, ARAÚJO A M, BOUCHONNEAU DA SILVA N S. A review on wind turbine control and its associated methods[J]. Journal of cleaner production, 2018, 174: 945-953.
[45] BOSSANYI E A.Wind turbine control for load reduction[J]. Wind energy, 2003, 6(3): 229-244.
[46] DE CORCUERA A D, PUJANA-ARRESE A, EZQUERRA J M, et al. H based control for load mitigation in wind turbines[J]. Energies, 2012, 5(4): 938-967.
[47] FLEMING P, WINGERDEN J W, WRIGHT A. Comparing state-space multivariable controls to multi-SISO controls for load reduction of drivetrain-coupled modes on wind turbines through field-testing[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, 2012: AIAA2012-1152.
[48] ZHANG Z L, NIELSEN S, BLAABJERG F, et al.Dynamics and control of lateral tower vibrations in offshore wind turbines by means of active generator torque[J]. Energies, 2014, 7(11): 7746-7772.
[49] WU A, SUN W L, WANG P P. Large wind turbine dynamic modeling and simulation[J]. Applied mechanics and materials, 2010, 34/35: 1098-1103.
[50] SKRZYPINSKI W R.Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions[D]. Copenhagen: Technical University of Denmark, 2012.
[51] JOHNSON K E, PAO L Y, BALAS M J, et al.Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture[J]. IEEE control systems, 2006, 26(3): 70-81.
[52] WANG D D, LUO Z K, PENG E G, et al.Influence of pitch control method of offshore medium speed wind power based on lateral damping strategy on blade vibration[J]. Journal of physics: conference series, 2022, 2276(1): 012035.
[53] ZHOU F H, YANG J X, PANG J, et al.Research on control methods and technology for reduction of large-scale wind turbine blade vibration[J]. Energy reports, 2023, 9: 912-923.
[54] LIU H M, YANG S X, TIAN W, et al.Vibration reduction strategy for offshore wind turbines[J]. Applied sciences, 2020, 10(17): 6091.
[55] LI N L, MU A L, YANG H, et al.Optimized under-actuated control of blade vibration system under wind uncertainty[J]. Journal of sound and vibration, 2020, 467: 115070.
[56] CONG C.Decentralized control of vibrations in wind turbines using multiple active tuned mass dampers with stroke constraint[J]. Advances in mechanical engineering, 2018, 10(12):1109-1119.
[57] FITZGERALD B, BASU B.Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades[J]. Journal of sound and vibration, 2014, 333(23): 5980-6004.
[58] STAINO A, BASU B.Emerging trends in vibration control of wind turbines: a focus on a dual control strategy[J]. Philosophical transactions series A, mathematical, physical, and engineering sciences, 2015, 373(2035): 20140069.
[59] TAO W F, BASU B, LI J.Reliability analysis of active tendon-controlled wind turbines by a computationally efficient wavelet-based probability density evolution method[J]. Structural control and health monitoring, 2018, 25(3): e2078.
[60] JOKAR H, VATANKHAH R, MAHZOON M.Active vibration control of horizontal-axis wind turbine blades using disturbance observer-based boundary control approach[J]. Engineering structures, 2023, 275: 115323.
[61] FAKHRY P, FANG D, TOKHI M O, et al.Smart optimized structural control of onshore wind turbines with MR dampers[J]. Engineering structures, 2024, 299: 117131.
[62] SIVRIOGLU S, BOLAT F C.Switching linear quadratic Gaussian control of a flexible blade structure containing magnetorheological fluid[J]. Transactions of the Institute of Measurement and Control, 2020, 42(3): 618-627.
[63] MOMENI S, ZABIHOLLAH A, BEHZAD M.Effects of size and location of magnetorheological segments on random vibration response of laminated composite beams using an N-layer of layerwise theory[J]. Journal of thermoplastic composite materials, 2024, 37(2): 566-603.
[64] HASHEMI A, JANG J, HOSSEINI-HASHEMI S.Smart active vibration control system of a rotary structure using piezoelectric materials[J]. Sensors, 2022, 22(15): 5691.
[65] WANG H, YI J Y, CHEN W, et al.Flutter analysis of piezoelectric material based smart wind turbine blade[J]. The international journal of acoustics and vibration, 2021, 26(3): 240-247.
[66] LEE S L.Active vibration suppression of wind turbine blades integrated with piezoelectric sensors[J]. Science and engineering of composite materials, 2021, 28(1): 402-414.
[67] AWADA A, YOUNES R, ILINCA A.Optimization of wind turbine performance by vibration control and deicing[J]. Journal of wind engineering and industrial aerodynamics, 2022, 229: 105143.
[68] ZHANG M M, YANG H L, XU J Z.Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine[J]. Renewable energy, 2017, 105: 248-256.
[69] HORCAS S G, MADSEN M H A, SØRENSEN N N, et al. Influence of the installation of a trailing edge flap on the vortex induced vibrations of a wind turbine blade[J]. Journal of wind engineering and industrial aerodynamics, 2022, 229: 105118.
[70] MALDONADO V, PERALTA N, AYELE W, et al.Effect of blade aspect ratio on the performance tradeoff between figure of merit and bending-torsion dynamics of wind turbines with synthetic jets[J]. Energy reports, 2023, 9: 4830-4843.
[71] CHEN B, HUA X G, ZHANG Z L, et al.Active flutter control of the wind turbines using double-pitched blades[J]. Renewable energy, 2021, 163: 2081-2097.
[72] SADEGHILARI K.Aerodynamic analysis of wake interaction and load mitigation for a wind turbine with active blade morphing control[D]. Buffalo: State University of New York, 2022.
[73] FERNANDEZ-GAMIZ U, ZULUETA E, BOYANO A, et al.Microtab design and implementation on a 5 MW wind turbine[J]. Applied sciences, 2017, 7(6): 536.
[74] LIU T R.Flutter suppression of blade section based on model prediction control[J]. Transactions of the Institute of Measurement and Control, 2020, 42(9): 1654-1666.
[75] NAIR M S, ARIHANT V, BHANU PRIYA D, et al.Design and CFD analysis of horizontal axis wind turbine blade with microtab[J]. IOP conference series: materials science and engineering, 2020, 912(2): 022054.
PDF(3161 KB)

Accesses

Citation

Detail

Sections
Recommended

/