MECHANISM OF PRE-SPUTTER LAYER MODULATION OF Cu(In, Ga)Se2 THIN FILM ORIENTATION

Dai Wanlei, Gao Zeran, Sun Yali, Jiang Zhaoyi, Wang Yinglong, Yu Wei

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 696-703.

PDF(4517 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4517 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (1) : 696-703. DOI: 10.19912/j.0254-0096.tynxb.2024-0323

MECHANISM OF PRE-SPUTTER LAYER MODULATION OF Cu(In, Ga)Se2 THIN FILM ORIENTATION

  • Dai Wanlei1, Gao Zeran1, Sun Yali1, Jiang Zhaoyi2, Wang Yinglong1, Yu Wei1
Author information +
History +

Abstract

The (220) preferential-oriented CIGS film has a smooth grain surface and can promote the diffusion of Cd or Zn cations, giving CIGS devices better diode characteristics. This thesis uses a high-temperature direct sputtering CIGS quaternary alloy target process to prepare the CIGS absorption layer, by controlling the temperature and thickness of the CIGS pre-sputtering layer, the (220) preferential orientation control mechanism of the CIGS pre-sputtering layer on CIGS thin films prepared by direct sputtering was studied. The results show that when the deposition temperature of the pre-sputtering layer gradually decreases, the X-ray diffraction (XRD) I220/I112 ratio of the CIGS film increases from 0.43 to 1.05, and the grain size gradually becomes larger and more uniform. When the thickness of the pre-sputtering layer increases from 0 nm to 120 nm, the I220/I112 ratio increases from 0.48 to 1.12. When the sputtering temperature was room temperature and the pre-sputtering layer thickness was 80 nm, a single-point device efficiency of 10.94% was finally obtained. Through AFM and XPS testing of the sample surface, we found that the low-temperature pre-sputtering layer can significantly reduce the substrate surface potential, and the amplitude of the voltage is only 25 mV. The lower surface potential promotes the preferential orientation of CIGS (220) deposited at high temperatures while increasing alkali metal doping, ultimately improving CIGS devices'efficiency.

Key words

CIGS / quaternary / sputtering / preferred orientation / surface potential

Cite this article

Download Citations
Dai Wanlei, Gao Zeran, Sun Yali, Jiang Zhaoyi, Wang Yinglong, Yu Wei. MECHANISM OF PRE-SPUTTER LAYER MODULATION OF Cu(In, Ga)Se2 THIN FILM ORIENTATION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 696-703 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0323

References

[1] GREEN M A, DUNLOP E D, YOSHITA M, et al.Solar cell efficiency tables(version 62)[J]. Progress in photovoltaics: research and applications, 2023, 31(7): 651-663.
[2] SALHI B.The photovoltaic cell based on CIGS: principles and technologies[J]. Materials, 2022, 15(5): 1908.
[3] HSU C H, SU Y S, WEI S Y, et al.Na-induced efficiency boost for Se-deficient Cu(In, Ga)Se2 solar cells[J]. Progress in photovoltaics: research and applications, 2015, 23(11): 1621-1629.
[4] DAI W L, GAO Z R, LI J J, et al.Above 15% efficient directly sputtered CIGS solar cells enabled by a modified back-contact interface[J]. ACS applied materials & interfaces, 2021, 13(41): 49414-49422.
[5] 欧阳良琦, 庄大明, 张宁, 等. 磁控溅射四元靶材法制备17.5%效率CIGS电池研究[J]. 太阳能学报, 2016, 37(11): 2994-2998.
OUYANG L Q, ZHUANG D M, ZHANG N, et al.Study of Cu(In, Ga)Se2 solar cell with 17.5% efficiency achieved by sputtering a quaternary target[J]. Acta energiae solaris sinica, 2016, 37(11): 2994-2998.
[6] 刘沅东, 卓胜, 汤清琼, 等. 使用CIGS四元靶材制备高效率电池研究[J]. 太阳能学报, 2018, 39(2): 567-571.
LIU Y D, ZHUO S, TANG Q Q, et al.Study of high efficiency cigs solar cell with absorber produced by quternary target[J]. Acta energiae solaris sinica, 2018, 39(2): 567-571.
[7] FRANTZ J A, BEKELE R Y, NGUYEN V Q, et al.Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization[J]. Thin solid films, 2011, 519(22): 7763-7765.
[8] ZHANG L, ZHUANG D M, ZHAO M, et al.The effects of annealing temperature on CIGS solar cells by sputtering from quaternary target with Se-free post annealing[J]. Applied surface science, 2017, 413: 175-180.
[9] HSU C H, HO W H, WEI S Y, et al.Over 14% efficiency of directly sputtered Cu(In,Ga)Se2 absorbers without postselenization by post-treatment of alkali metals[J]. Advanced energy materials, 2017, 7(13): 1602571.
[10] CHEN C H, LIN T Y, HSU C H, et al.Comprehensive characterization of Cu-rich Cu(In, Ga)Se2 absorbers prepared by one-step sputtering process[J]. Thin solid films, 2013, 535: 122-126.
[11] CHEN C H, SHIH W C, CHIEN C Y, et al.A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In, Ga)Se2 absorbers without extra Se supply[J]. Solar energy materials and solar cells, 2012, 103: 25-29.
[12] CABALLERO R, NICHTERWITZ M, STEIGERT A, et al.Impact of Na on MoSe2 formation at the CIGSe/Mo interface in thin-film solar cells on polyimide foil at low process temperatures[J]. Acta materialia, 2014, 63: 54-62.
[13] LIN T Y, CHEN C H, WANG L W, et al.Engineering Na-transport to achieve high efficiency in ultrathin Cu(In, Ga)Se2 solar cells with controlled preferred orientation[J]. Nano energy, 2017, 41: 697-705.
[14] KAMIKAWA-SHIMIZU Y, SHIMADA S, WATANABE M, et al.Effects of Mo back contact thickness on the properties of CIGS solar cells[J]. Physica status solidi (a), 2009, 206(5): 1063-1066.
[15] LI J J, DENG B F, ZHU H B, et al.Rear interface modification for efficient Cu(In,Ga)Se2 solar cells processed with metallic precursors and low-cost Se vapor[J]. Solar energy materials and solar cells, 2018, 186: 243-253.
[16] WANG Y Z, LV S S, LI Z C.Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells[J]. Journal of materials science & technology, 2022, 96: 179-189.
PDF(4517 KB)

Accesses

Citation

Detail

Sections
Recommended

/