CONCEPT AND FEASIBILITY STUDY OF U-TYPE VERTICAL AXIS WIND TURBINE

Cheng Biyi, Qu Xiaobin, Zhou Zhiming, Wei Jionghui, Yao Yingxue

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 328-335.

PDF(2744 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2744 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 328-335. DOI: 10.19912/j.0254-0096.tynxb.2024-0331
Special Topics of Academic Papers at the 59th Annual Meeting of the China Association for Science and Technology

CONCEPT AND FEASIBILITY STUDY OF U-TYPE VERTICAL AXIS WIND TURBINE

  • Cheng Biyi1,2, Qu Xiaobin3, Zhou Zhiming4, Wei Jionghui4, Yao Yingxue2
Author information +
History +

Abstract

In order to effectively solve the structural limits of Vertical Axis Wind Turbine (VAWT), such as easy to break the shaft and difficult to scale up, a configuration design of U-type VAWT is proposed in this study. The basic composition and operational principle of the novel wind turbine are introduced. The Finite Element Method (FEM) models of VAWT are established and verified. The anti-overturning mechanical model of U-type VAWT is established. The load balance analyses of U-type support component, hinge mechanism, roller unit and vehicle assembly are completed. Based on the combined deformation theory and the alternating stress-fatigue life analysis theory, the mathematical model of the static-strength fatigue life of the main support component is established. The static simulation model is used to analyze the influence of supplementary supporting components on the deformation of U-type VAWT. The research results show that U-type VAWT adopts the inclined main support component with the airfoil section instead of the vertical main shaft, and the pressure-type roller unit and the load-beaning vehicle assembly can effectively prevent the overturning of U-type VAWT. The running speed of the vehicle assembly is less than 97.2 km/h which is 27 m/s. The alternating stress amplitude ratio of U-type and H-type VAWT in the dangerous section of the main support component is less than 0.9, which means the service life of U-type VAWT is 2.34 times of that of H-type at least. The rope reduces the deformation of U-type VAWT by about 60%, effectively reducing the mass of U-type VAWT.

Key words

vertical axis wind turbine / conceptual design / static analysis / structural loads / fatigue life

Cite this article

Download Citations
Cheng Biyi, Qu Xiaobin, Zhou Zhiming, Wei Jionghui, Yao Yingxue. CONCEPT AND FEASIBILITY STUDY OF U-TYPE VERTICAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 328-335 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0331

References

[1] 廖唯良, 张明明, 杨建军, 等. 超大型风力机叶片颤振抑制研究进展[J/OL]. 太阳能学报, 1-10[2024-07-02].
LIAO W L, ZHANG M M, YANG J J, et al.Research progress of blade flutter suppression for ultra-large wind turbines [J/OL]. Acta energiae solaris sinica,1-10[2024-07-02].
[2] 李立安. 风电机组叶片疲劳损伤状态预警与健康监测[J]. 太阳能学报, 2024, 45(2): 499.
LI L A.Fatigue damage state warning and health monitoring of wind turbine blades[J]. Acta energiae solaris sinica, 2024, 45(2): 499.
[3] 刘永飞, 陈微圣, 孙晓晶. 三种流动控制方法对H型垂直轴风力机性能影响的对比分析[J]. 太阳能学报, 2024, 45(3): 105-115.
LIU Y F, CHEN W S, SUN X J.Comparative analysis of effectiveness of three different flow control strategies for performance enhancement of H-type vertical axis wind turbine[J]. Acta energiae solaris sinica, 2024, 45(3): 105-115.
[4] 凌子焱, 赵振宙, 刘一格, 等. 垂直轴风力机三维尾流模型的研究[J]. 太阳能学报, 2023, 44(11): 196-202.
LING Z Y, ZHAO Z Z, LIU Y G, et al.Study of three-dimensional wake model for vertical-axis wind turbine[J]. Acta energiae solaris sinica, 2023, 44(11): 196-202.
[5] 李根, 刘青松, 李春, 等. 基于正交试验凹槽-襟翼垂直轴风力机数值研究[J]. 太阳能学报, 2023, 44(5): 294-301.
LI G, LIU Q S, LI C, et al.Numerical study of vertical axis wind turbine with dimple-flaps based on orthogonal test[J]. Acta energiae solaris sinica, 2023, 44(5): 294-301.
[6] 欧华浩, 叶舟, 刘青松, 等. 伸缩式斜柱对垂直轴风力机气动性能影响研究[J]. 太阳能学报, 2023, 44(5): 376-383.
OU H H, YE Z, LIU Q S, et al.Study on effect of telescopic inclined columns on aerodynamic performance of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2023, 44(5): 376-383.
[7] DE TAVERNIER D, FERREIRA C, GOUDE A.Vertical-axis wind turbine aerodynamics[M]//Handbook of Wind Energy Aerodynamics. Cham: Springer International Publishing, 2022: 1317-1361.
[8] MOHAN KUMAR P, SIVALINGAM K, LIM T C, et al.Review on the evolution of darrieus vertical axis wind turbine: large wind turbines[J]. Clean technologies, 2019, 1(1): 205-223.
[9] 徐文浩, 邱展, 喻伯平, 等. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.
XU W H, QIU Z, YU B P, et al.Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of Zhejiang University (engineering science), 2019, 53(11): 2223-2230.
[10] WORLD WILD WIND. Next generation floating offshore wind[EB/OL]. (2022-12-06) [2023-02-18]. https://worldwidewind.no/.
[11] FEATURES ARUP. Wind Power Ltd.[EB/OL]. (2013-02-20) [2023-02-18]. http://www. windpower.ltd.uk/.
[12] ARPINO F, SCUNGIO M, CORTELLESSA G.Numerical performance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades[J]. Energy conversion and management, 2018, 171: 769-777.
[13] CHENG B Y, DU J J, YAO Y X.Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines[J]. Energy, 2022, 244: 122643.
[14] CHENG B Y, DU J J, YAO Y X.Power prediction formula for blade design and optimization of dual Darrieus Wind turbines based on Taguchi method and genetic expression programming model[J]. Renewable energy, 2022, 192: 583-605.
[15] CHENG B Y, YAO Y X.Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines[J]. Energy, 2023, 278: 127940.
[16] CHENG B Y, YAO Y X.Design and optimization of a novel U-type vertical axis wind turbine with response surface and machine learning methodology[J]. Energy conversion and management, 2022, 273: 116409.
[17] DABACHI M A, ROUWAY M, RAHMOUNI A, et al.Numerical investigation of the structural behavior of an innovative offshore floating darrieus-type wind turbines with three-stage rotors[J]. Journal of composites science, 2022, 6(6): 167.
[18] HAMEED M S, AFAQ S K.Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques[J]. Ocean engineering, 2013, 57: 248-255.
[19] GB/T 29494—2013, 小型垂直轴风力发电机组[S].
GB/T 29494—2013, Small vertical axis wind turbines[S].
[20] GB/T4661—2015, 滚动轴承圆柱滚子[S].
GB/T4661—2015, Rolling bearings—cylindrical rollers[S].
[21] GB/T4662—2012, 滚动轴承额定静载荷[S].
GB/T4662—2012, Rolling bearings—Static load ratings[S].
PDF(2744 KB)

Accesses

Citation

Detail

Sections
Recommended

/