PARAMETER IDENTIFICATION OF SOLAR CELL BASED ON DATA DENOISING META-HEURISTIC ALGORITHM

Gu Minqi, Lyu Zhilin, Lu Jianfeng, Hai Tao, Wang Jun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 589-597.

PDF(2236 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2236 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 589-597. DOI: 10.19912/j.0254-0096.tynxb.2024-0357
Special Topics of Academic Papers at the 90th Annual Meeting of the China Association for Science and Technology

PARAMETER IDENTIFICATION OF SOLAR CELL BASED ON DATA DENOISING META-HEURISTIC ALGORITHM

  • Gu Minqi1, Lyu Zhilin1, Lu Jianfeng2, Hai Tao1, Wang Jun3
Author information +
History +

Abstract

Noise in the measured voltage-current (V-I) data reduces the accuracy of solar cell parameter identification of heuristic algorithm (MhA). To address this issue, a kind of data denoising meta-heuristic algorithm (DDMhA), whose function is to precisely identify solar cell parameters, is proposed on the basis of kernel extreme learning machine (KELM). By using KELM for training V-I data to filter noise, the accuracy of MhA fitness function is promoted, giving impetus to the global exploration ability of MhA, as a result, the parameter identification precision is well guaranteed. In the validation experiments, the solar cell double diode model (DDM) is used for parameter identification, to be more specific, 50 sets of mixed V-I data were subjected to both non-denoising and denoising processing, and then the parameter identification results of 6 MhA by different processing methods were put in comparison. According to the experimental results, DDMhA is effective in filtering data noise, thus improving the identification accuracy and convergence speed of the original MhA.

Key words

solar cells / parameter identification / heuristic algorithms / data denoising / kernel extreme learning machine(KELM)

Cite this article

Download Citations
Gu Minqi, Lyu Zhilin, Lu Jianfeng, Hai Tao, Wang Jun. PARAMETER IDENTIFICATION OF SOLAR CELL BASED ON DATA DENOISING META-HEURISTIC ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 589-597 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0357

References

[1] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[2] WU S F, LI Z, LI M Q, et al.2D metal-organic framework for stable perovskite solar cells with minimized lead leakage[J]. Nature nanotechnology, 2020, 15(11): 934-940.
[3] YANG B, WANG J B, ZHANG X S, et al.Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification[J]. Energy conversion and management, 2020, 208: 112595.
[4] ELAZAB O S, HASANIEN H M, ALSAIDAN I, et al.Parameter estimation of three diode photovoltaic model using grasshopper optimization algorithm[J]. Energies, 2020, 13(2): 497.
[5] KUMAR PATRO S, SAINI R P.Mathematical modeling framework of a PV model using novel differential evolution algorithm[J]. Solar energy, 2020, 211: 210-226.
[6] GAO S C, WANG K Y, TAO S C, et al.A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models[J]. Energy conversion and management, 2021, 230: 113784.
[7] AB RASHID MOHD FADZIL FAISAE. Tiki-taka algorithm: a novel metaheuristic inspired by football playing style[J]. Engineering computations, 2021, 38(1): 313-343.
[8] ZAMLI K Z, KADER A, DIN F, et al.Selective chaotic maps Tiki-Taka algorithm for the S-box generation and optimization[J]. Neural computing and applications, 2021, 33(23): 16641-16658.
[9] 徐明, 焦建军, 龙文. 改进灰狼优化算法辨识光伏模型参数[J]. 中国科技论文, 2019, 14(8): 917-921, 926.
XU M, JIAO J J, LONG W.Parameter identification of photovoltaic model using improved grey wolf optimizer algorithm[J]. China sciencepaper, 2019, 14(8): 917-921, 926.
[10] YU K J, LIANG J J, QU B Y, et al.Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models[J]. Applied energy, 2018, 226: 408-422.
[11] 朱显辉, 钟敬文, 师楠, 等. 基于改进自适应粒子群算法的光伏电池参数识别[J]. 黑龙江科技大学学报, 2022, 32(6): 784-789.
ZHU X H, ZHONG J W, SHI N, et al.Parameters identification of photovoltaic cells based on an improved adaptive particle swarm algorithm[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(6): 784-789.
[12] 简献忠, 王鹏, 王如志. 基于改进蝠鲼优化算法的光伏组件参数辨识模型[J]. 计量学报, 2023, 44(1): 109-119.
JIAN X Z, WANG P, WANG R Z.Parameter identification model of photovoltaic module based on improved manta ray optimization algorithm[J]. Acta metrologica sinica, 2023, 44(1): 109-119.
[13] 杨博, 曾春源, 陈义军, 等. 极限学习机及其在质子交换膜燃料电池参数辨识中的应用[J]. 上海交通大学学报, 2023, 57(4): 482-494.
YANG B, ZENG C Y, CHEN Y J, et al.Extreme learning machine and its application in parameter identification of proton exchange membrane fuel cell[J]. Journal of Shanghai Jiaotong University, 2023, 57(4): 482-494.
[14] 张忠奎, 张晗, 闫洋洋. 基于最小二乘法和BP神经网络的磁流变阻尼器H-B模型参数辨识方法[J]. 机床与液压, 2024, 52(4): 126-131.
ZHANG Z K, ZHANG H, YAN Y Y.Parameter identification method of H-B model for magnetorheological damper based on least square method and BP neural network[J]. Machine tool & hydraulics, 2024, 52(4): 126-131.
[15] 孙瑞阳, 姜毅, 牛钰森, 等. 基于卷积神经网络的固体火箭发动机内弹道参数辨识[J]. 固体火箭技术, 2022, 45(3): 351-360.
SUN R Y, JIANG Y, NIU Y S, et al.Internal ballistic parameter identification of solid rocket motor based on convolutional neural network[J]. Journal of solid rocket technology, 2022, 45(3): 351-360.
[16] 薛飞, 李宏强, 李旭涛, 等. 基于LSTM神经网络的双馈风机控制参数辨识方法[J]. 中国电力, 2023, 56(6): 31-39.
XUE F, LI H Q, LI X T, et al.Identification method for control parameters of doubly-fed induction generator based on LSTM neural network[J]. Electric power, 2023, 56(6): 31-39.
[17] 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670.
XU R, LIANG X, QI J S, et al.Advances and trends in extreme learning machine[J]. Chinese journal of computers, 2019, 42(7): 1640-1670.
[18] 徐宇, 杨鹏杰, 李磊. 基于优化核极限学习机的新能源配电网继电保护故障检测技术[J]. 自动化应用, 2023(23): 64-69.
XU Y, YANG P J, LI L.New energy distribution network relay protection fault detection technology based on optimized kernel limit learning machine[J]. Automation application, 2023(23): 64-69.
[19] HAN F, JIANG J, LING Q H, et al.A survey on metaheuristic optimization for random single-hidden layer feedforward neural network[J]. Neurocomputing, 2019, 335: 261-273.
[20] 吴忠强, 刘重阳, 赵德隆, 等. 基于IEHO算法的太阳电池模型参数辨识[J]. 太阳能学报, 2021, 42(9): 97-103.
WU Z Q, LIU C Y, ZHAO D L, et al.Parameter identification of solar cell model based on IEHO algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 97-103.
[21] 吴艳娟, 刘振朝, 王云亮. 基于IPOA的太阳电池模型参数辨识[J]. 太阳能学报, 2024, 45(1): 1-10.
WU Y J, LIU Z C, WANG Y L.Parameter identification of solar cell model based on IPOA[J]. Acta energiae solaris sinica, 2024, 45(1): 1-10.
[22] CHIN V J, SALAM Z, ISHAQUE K.An accurate and fast computational algorithm for the two-diode model of PV module based on a hybrid method[J]. IEEE transactions on industrial electronics, 2017, 64(8): 6212-6222.
[23] 高贯斌, 谢佩, 刘飞, 等. 基于复合标定和极限学习机的关节臂式坐标测量机残差建模及补偿[J]. 光学精密工程, 2023, 31(22): 3289-3304.
GAO G B, XIE P, LIU F, et al.Residual modelling and compensation for articulated arm coordinate measuring machines based on compound calibration and extreme learning machine[J]. Optics and precision engineering, 2023, 31(22): 3289-3304.
[24] 刘世林, 李德俊, 姚伟, 等. 基于核极限学习机与容积卡尔曼滤波融合的锂电池荷电状态估计[J]. 湖南大学学报(自然科学版), 2023, 50(10): 51-59.
LIU S L, LI D J, YAO W, et al.Estimation on state of charge of lithium battery based on fusion of kernel extreme learning machine and cubature Kalman filter[J]. Journal of Hunan University (natural sciences), 2023, 50(10): 51-59.
[25] 曾一婕, 王龙, 黄超. 基于Jaya-DA算法的太阳电池模型参数辨识[J]. 太阳能学报, 2022, 43(2): 198-202.
ZENG Y J, WANG L, HUANG C.Parameter identification of solar cell model based on Jaya-Da algorithm[J]. Acta energiae solaris sinica, 2022, 43(2): 198-202.
[26] 刘斌, 谈竹奎, 唐赛秋, 等. 基于数据预测启发式算法的光伏电池参数识别[J]. 电力系统保护与控制, 2021, 49(23): 72-79.
LIU B, TAN Z K, TANG S Q, et al.Photovoltaic cell parameter extraction using data prediction based on a meta-heuristic algorithm[J]. Power system protection and control, 2021, 49(23): 72-79.
PDF(2236 KB)

Accesses

Citation

Detail

Sections
Recommended

/