JOINT ESTIMATION OF SOH AND RUL FOR LITHIUM BATTERIES BASED ON FEATURE RECONSTRUCTION AND MULTIPLE TIMES SCALES

Kou Farong, Yang Tianxiang, Luo Xi, Wang Kan, Zhou Dongming

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 68-78.

PDF(2380 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2380 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (6) : 68-78. DOI: 10.19912/j.0254-0096.tynxb.2024-0382
Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and Technology

JOINT ESTIMATION OF SOH AND RUL FOR LITHIUM BATTERIES BASED ON FEATURE RECONSTRUCTION AND MULTIPLE TIMES SCALES

  • Kou Farong, Yang Tianxiang, Luo Xi, Wang Kan, Zhou Dongming
Author information +
History +

Abstract

A joint estimation method of SOH and RUL based on feature reconstruction and multiple time scales is proposed in this paper. Firstly, six health features related to capacity degradation are extracted from the lithium battery aging data set, and the feature data is reconstructed by using variational mode decomposition algorithm. The feature reconstruction was achieved by filtering the participating modes through user-defined indicators; On this basis, the Bayesian algorithm is used to optimize the convolutional long-term and short-term memory network to construct the SOH estimation model. The accurate and efficient estimation of SOH and RUL is achieved by combining the algorithm iteration at the micro scale with the convolutional neural network model at the macro scale. The results show that the estimation error of SOH is stable within 1%, and the estimation accuracy is about 35% higher than that before feature reconstruction; The mean absolute error (MAE) and root mean square error(RMSE) of RUL prediction results are kept within 0.42 and 0.78, respectively, which realizes the high-precision estimation of SOH and RUL.

Key words

lithium battery / long-term and short-term memory network / modal decomposition / multiple time scales / joint estimation / clean energy

Cite this article

Download Citations
Kou Farong, Yang Tianxiang, Luo Xi, Wang Kan, Zhou Dongming. JOINT ESTIMATION OF SOH AND RUL FOR LITHIUM BATTERIES BASED ON FEATURE RECONSTRUCTION AND MULTIPLE TIMES SCALES[J]. Acta Energiae Solaris Sinica. 2025, 46(6): 68-78 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0382

References

[1] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
LI J L, QU S K, MA S L, et al.Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(3): 326-335.
[2] 夏向阳, 陈贵全, 夏天, 等. 二次谐波分量下锂离子电池安全运行区间研究[J]. 太阳能学报, 2023, 44(10): 496-503.
XIA X Y, CHEN G Q, XIA T, et al.Study on safe operation range of lithium-ion battery under second harmonic component[J]. Acta energiae solaris sinica, 2023, 44(10): 496-503.
[3] YANG R X, XIONG R, HE H W, et al.A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of cleaner production, 2018, 187: 950-959.
[4] CHEN Z W, SHI N, JI Y F, et al.Lithium-ion batteries remaining useful life prediction based on BLS-RVM[J]. Energy, 2021, 234: 121269.
[5] TIAN H X, QIN P L, LI K, et al.A review of the state of health for lithium-ion batteries: research status and suggestions[J]. Journal of cleaner production, 2020, 261: 120813.
[6] LI C F, YANG L, LI Q, et al.SOH estimation method for lithium-ion batteries based on an improved equivalent circuit model via electrochemical impedance spectroscopy[J]. Journal of energy storage, 2024, 86: 111167.
[7] HOSSEININASAB S, LIN C W, PISCHINGER S, et al.State-of-health estimation of lithium-ion batteries for electrified vehicles using a reduced-order electrochemical model[J]. Journal of energy storage, 2022, 52: 104684.
[8] KHODADADI S K, JIN X, RIZZONI G.Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of power sources, 2021, 481: 228861.
[9] LI Y, LIU K L, FOLEY A M, et al.Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and sustainable energy reviews, 2019, 113: 109254.
[10] 李练兵, 朱乐, 李思佳, 等. 基于差分电压和ICS-Elman神经网络的锂离子电池剩余使用寿命预测方法[J]. 太阳能学报, 2023, 44(12): 433-443.
LI L B, ZHU L, LI S J, et al.Remaining useful life prediction of lithium-ion batteries based on differential voltage and ICS-Elman neural networks[J]. Acta energiae solaris sinica, 2023, 44(12): 433-443.
[11] ZHAO L, WANG Y P, CHENG J H.A hybrid method for remaining useful life estimation of lithium-ion battery with regeneration phenomena[J]. Applied sciences, 2019, 9(9): 1890.
[12] ZHANG J A, WANG P, GONG Q R, et al.SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model[J]. Journal of power electronics, 2021, 21(11): 1712-1723.
[13] GONG Y D, ZHANG X Y, GAO D Z, et al.State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of energy storage, 2022, 53: 105046.
[14] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[15] TOUGHZAOUI Y, TOOSI S B, CHAOUI H, et al.State of health estimation and remaining useful life assessment of lithium-ion batteries: a comparative study[J]. Journal of energy storage, 2022, 51: 104520.
[16] 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534.
WANG P, FAN L F, CHENG Z.A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534.
[17] GU J X, WANG Z H, KUEN J, et al.Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377.
[18] 孙原理, 宋志浩. 基于卷积长短期记忆网络和人工鲸鱼算法的核反应堆运行事件诊断方法研究[J]. 核动力工程, 2022, 43(4): 185-190.
SUN Y L, SONG Z H.Research on nuclear reactor operation event diagnosis method based on convolutional long short term memory network and artificial whale algorithm[J]. Nuclear power engineering, 2022, 43(4): 185-190.
[19] BIAU G, SCORNET E.A random forest guided tour[J]. TEST, 2016, 25(2): 197-227.
[20] BELGIU M, DRAGUT L.Random forest in remote sensing: a review of applications and future directions[J]. ISPRS journal of photogrammetry and remote sensing, 2016, 114: 24-31.
[21] PELIKAN M, GOLDBERG D E, TSUTSUI S.Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms[C]//SICE 2003 Annual Conference. Fukui, Japan, 2003: 2738-2743.
[22] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
PDF(2380 KB)

Accesses

Citation

Detail

Sections
Recommended

/