RESEARCH ON DATA PROCESSING METHODS FOR "WIND SPEED-POWER" IN WIND TURBINE SCADA SYSTEMS

Liu Yuan, Li Zhonghu, Wang Jinming, Yang Liqing, Zhang Xinyu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 353-360.

PDF(17634 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(17634 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 353-360. DOI: 10.19912/j.0254-0096.tynxb.2024-0383
Special Topics of Academic Papers at the 62th Annual Meeting of the China Association for Science and Technology

RESEARCH ON DATA PROCESSING METHODS FOR "WIND SPEED-POWER" IN WIND TURBINE SCADA SYSTEMS

  • Liu Yuan1, Li Zhonghu1, Wang Jinming1, Yang Liqing1, Zhang Xinyu2
Author information +
History +

Abstract

In the SCADA system data of wind turbines, if the density of noise data is too high, it may mistakenly clean the rated power data during the preprocessing process. To address this issue, the DBSCAN clustering algorithm can be used to remove noise data points near the rated power data, ensuring that only normal rated power data is retained. Then, on the wind speed-power curve, identify the boundary between the rated power data and other data, and temporarily store the upper part. For the lower part, apply a combination of Chauvenet's criterion and Box-Cox transformation to handle it. Finally, merge the two parts of the data. This approach can effectively reduce the problem of mistakenly cleaning rated power data due to high noise data density during the preprocessing of wind turbine SCADA data.

Key words

wind turbines / SCADA systems / data processling / rated power data / DBSCAN clustering algorithm / Chauvenet criterion

Cite this article

Download Citations
Liu Yuan, Li Zhonghu, Wang Jinming, Yang Liqing, Zhang Xinyu. RESEARCH ON DATA PROCESSING METHODS FOR "WIND SPEED-POWER" IN WIND TURBINE SCADA SYSTEMS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 353-360 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0383

References

[1] 苏连成, 朱娇娇, 郭高鑫, 等. 基于XGBoost和Wasserstein距离的风电机组塔架振动监测研究[J]. 太阳能学报, 2023, 44(1): 306-312.
SU L C, ZHU J J, GUO G X, et al.Research on wind turbine tower vibration monitoring based on XGBoost and Wasserstein distance[J]. Acta energiae solaris sinica, 2023, 44(1): 306-312.
[2] 陈雪峰, 李继猛, 程航, 等. 风力发电机状态监测和故障诊断技术的研究与进展[J]. 机械工程学报, 2011, 47(9): 45-52.
CHEN X F, LI J M, CHENG H, et al.Research and application of condition monitoring and fault diagnosis technology in wind turbines[J]. Journal of mechanical engineering, 2011, 47(9): 45-52.
[3] 李辉, 胡姚刚, 唐显虎, 等. 并网风电机组在线运行状态评估方法[J]. 中国电机工程学报, 2010, 30(33): 103-109.
LI H, HU Y G, TANG X H, et al.Method for on-line operating conditions assessment for a grid-connected wind turbine generator system[J]. Proceedings of the CSEE, 2010, 30(33): 103-109.
[4] 胡姚刚, 刘怀盛, 时萍萍, 等. 风电机组偏航系统故障诊断与寿命预测综述[J]. 中国电机工程学报, 2022, 42(13): 4871-4884.
HU Y G, LIU H S, SHI P P, et al.Overview of fault diagnosis and life prediction for wind turbine yaw system[J]. Proceedings of the CSEE, 2022, 42(13): 4871-4884.
[5] 张舒翔, 刘晓彤, 郭旭峰, 等. 基于SCADA数据驱动的风电机组状态监测[J]. 电工技术, 2022(22): 47-50.
ZHANG S X, LIU X T, GUO X F, et al.Wind turbine condition monitoring based on SCADA data drive[J]. Electric engineering, 2022(22): 47-50.
[6] 马良玉, 袁乃正. 基于CFSFDP与LightGBM的风电机组异常状态预警研究[J]. 太阳能学报, 2023, 44(5): 401-406.
MA L Y, YUAN N Z.Research on abnormal condition early warning for wind turbine based on CFSFDP and LIGHTGBM[J]. Acta energiae solaris sinica, 2023, 44(5): 401-406.
[7] 刘宜荣. 基于SCADA数据的风电机组故障诊断与预警的研究[D]. 济南: 山东大学, 2021.
LIU Y R.Research on fault diagnosis and early warning of wind turbine based on SCADA data[D]. Ji’nan: Shandong University, 2021.
[8] 张佳楠, 薛安荣. 风电机组异常数据检测、清洗与解释方法研究[J]. 计算机与数字工程, 2023, 51(9): 2195-2200, 2217.
ZHANG J N, XUE A R.Research on wind turbine anomaly data detection, cleaning and interpretation methods[J]. Computer & digital engineering, 2023, 51(9): 2195-2200, 2217.
[9] ZUO C M, DAI J C, LI G, et al.Investigation of data pre-processing algorithms for power curve modeling of wind turbines based on ECC[J]. Energies, 2023, 16(6): 2679.
[10] CHEN Z N, WANG J C, GUO J F, et al.Statistical method of low efficiency wind turbine generating wind power curve based on operating data[J]. Journal of Physics: Conference Series, 2022, 2218(1): 012062.
[11] 刘玉涵. 基于数据驱动的风电机组关键部件健康状态监测方法研究[D]. 兰州: 兰州理工大学, 2024.
LIU Y H.Research on health condition monitoring method of wind turbine critical component based on data-driven[D]. Lanzhou: Lanzhou University of Technology, 2024.
[12] GB/T 18451.2—2021, 风力发电机组功率特性测试[S].
GB/T 18451.2—2021, Wind turbine-Power performance measurements of electricity producing[S].
[13] 李鹏飞, 雷未, 虞冬冬, 等. 基于密度聚类的监测数据漂移动态校正算法[J]. 人民长江, 2023, 54(11): 221-227.
LI P F, LEI W, YU D D, et al.Dynamic correction method for monitoring data drift based on density clustering[J]. Yangtze river, 2023, 54(11): 221-227.
[14] 李特, 王荣喜, 高建民. 风电机组数据采集与监控系统异常数据识别方法[J]. 西安交通大学学报, 2024, 58(3): 106-116.
LI T, WANG R X, GAO J M.Method for identifying abnormal data in wind turbine data acquisition and monitoring system[J]. Journal of Xi’an Jiaotong University, 2024, 58(3): 106-116.
[15] 王勃, 李振元, 孙勇, 等. 基于最小二乘滤波-肖维勒准则的光伏异常功率数据清洗及预测应用[J]. 昆明理工大学学报(自然科学版), 2021, 46(2): 59-71.
WANG B, LI Z Y, SUN Y, et al.Application of photovoltaic abnormal power data cleaning based on least squares filter-chauvenet criterion[J]. Journal of Kunming University of Science and Technology (natural sciences), 2021, 46(2): 59-71.
[16] 韩则胤, 王宁, 苏宝定, 等. 基于Box-Cox变换结合多种算法的风电机组数据预处理方法研究[J]. 计算机测量与控制, 2024, 32(1): 150-156, 164.
HAN Z Y, WANG N, SU B D, et al.Research on wind turbine data preprocessing method combined with multiple algorithms based on Box-Cox transformation[J]. Computer measurement & control, 2024, 32(1): 150-156, 164.
PDF(17634 KB)

Accesses

Citation

Detail

Sections
Recommended

/