COMPREHENSIVE VOLTAGE COMPENSATION METHOD FOR WIND POWER INTEGRATION GRID BASED ON SPLIT-PHASE POWER FLOW OPTIMIZATION

Jia Ruiyuan, Liu Qihui, Ge Xinyi, Cai Xipeng, Zhu Yihua, Luo Chao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 361-370.

PDF(2049 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2049 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 361-370. DOI: 10.19912/j.0254-0096.tynxb.2024-0385
Special Topics of Academic Papers at the 63th Annual Meeting of the China Association for Science and Technology

COMPREHENSIVE VOLTAGE COMPENSATION METHOD FOR WIND POWER INTEGRATION GRID BASED ON SPLIT-PHASE POWER FLOW OPTIMIZATION

  • Jia Ruiyuan1,2, Liu Qihui1, Ge Xinyi1, Cai Xipeng3,4, Zhu Yihua3~5, Luo Chao3~5
Author information +
History +

Abstract

Aiming at the issue that the reactive power compensation of large-scale wind power integration grid mainly focuses on voltage deviation, which can not adapt to the voltage imbalance operation condition, this paper proposes a comprehensive voltage compensation method based on split-phase power flow optimization (SPPFO). Firstly, a SPPFO model is established, which takes the minimum mean value of voltage unbalance, the minimum mean value of three-phase voltage deviation and the minimum total compensation amount of centralized reactive power compensation equipment as the optimization objectives. After that, an improved multi-objective particle swarm optimization(MOPSO) algorithm is used to solve the optimization model with high performance. Furthermore, for the obtained quasi-optimal compensation schemes as the solutions of SPPFO, the optimal compensation scheme is determined by the combination of order relation analysis method and the technique for order preference by similarity to an ideal solution method (TOPSIS). Finally, an actual wind power integration grid in north China is taken as a case study to verify the effectiveness of the proposed strategy and the advantages of the proposed improved MOPSO.

Key words

voltage imbalance / voltage quality / particle swarm optimization / wind power integration grid / split-phase power flow optimization

Cite this article

Download Citations
Jia Ruiyuan, Liu Qihui, Ge Xinyi, Cai Xipeng, Zhu Yihua, Luo Chao. COMPREHENSIVE VOLTAGE COMPENSATION METHOD FOR WIND POWER INTEGRATION GRID BASED ON SPLIT-PHASE POWER FLOW OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 361-370 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0385

References

[1] 贺益康, 胡家兵. 双馈异步风力发电机并网运行中的几个热点问题[J]. 中国电机工程学报, 2012, 32(27): 1-15.
HE Y K, HU J B.Several hot-spot issues associated with the grid-connected operations of wind-turbine driven doubly fed induction generators[J]. Proceedings of the CSEE, 2012, 32(27): 1-15.
[2] 张哲, 王成福, 董晓明, 等. 基于分层模型预测控制的风电场电压协调控制策略[J]. 电力系统自动化, 2019, 43(11): 34-42, 94.
ZHANG Z, WANG C F, DONG X M, et al.Coordinated voltage control strategy of wind farms based on hierarchical model predictive control[J]. Automation of electric power systems, 2019, 43(11): 34-42, 94.
[3] 杨珺, 郝敬, 薄志谦. 基于相邻经验粒子群算法的风电场集群无功电压分层控制策略[J]. 电网技术, 2017, 41(6): 1823-1829.
YANG J, HAO J, BO Z Q.Hierarchical control strategy for reactive power and voltage of wind farm cluster based on adjacent experiential particle swarm optimization[J]. Power system technology, 2017, 41(6): 1823-1829.
[4] 尹青, 杨洪耕, 马晓阳. 含大规模风电场的电网概率无功优化调度[J]. 电网技术, 2017, 41(2): 514-520.
YIN Q, YANG H G, MA X Y.Probabilistic optimal reactive power dispatch of power grid with large-scale wind farm integration[J]. Power system technology, 2017, 41(2): 514-520.
[5] ZHANG C, CHEN H Y, NGAN H.Reactive power optimisation considering wind farms based on an optimal scenario method[J]. IET generation, transmission & distribution, 2016, 10(15): 3736-3744.
[6] 蔡游明, 李征, 蔡旭. 以并网点电压和机端电压平稳性为目标的风电场无功电压协调控制[J]. 电力自动化设备, 2018, 38(8): 166-173.
CAI Y M, LI Z, CAI X.Coordinated control of reactive power and voltage for wind farm aiming at voltage stability of PCC and generator terminal[J]. Electric power automation equipment, 2018, 38(8): 166-173.
[7] GANGWAR P, SINGH S N, CHAKRABARTI S.Multi-objective planning model for multi-phase distribution system under uncertainty considering reconfiguration[J]. IET renewable power generation, 2019, 13(12): 2070-2083.
[8] LI P, JI H R, WANG C S, et al.Optimal operation of soft open points in active distribution networks under three-phase unbalanced conditions[J]. IEEE transactions on smart grid, 2019, 10(1): 380-391.
[9] WANG J, ZHOU N C, CHUNG C Y, et al.Coordinated planning of converter-based DG units and soft open points incorporating active management in unbalanced distribution networks[J]. IEEE transactions on sustainable energy, 2020, 11(3): 2015-2027.
[10] SUN F Z, MA J C, YU M, et al.Optimized two-time scale robust dispatching method for the multi-terminal soft open point in unbalanced active distribution networks[J]. IEEE transactions on sustainable energy, 2021, 12(1): 587-598.
[11] PENG Y J, LI Y, LEE K Y, et al.Coordinated control strategy of PMSG and cascaded H-bridge STATCOM in dispersed wind farm for suppressing unbalanced grid voltage[J]. IEEE transactions on sustainable energy, 2021, 12(1): 349-359.
[12] 刘辉, 陈璨, 巨云涛, 等. 风电汇集地区电压不平衡特性分析及抑制策略[J]. 电力系统自动化, 2021, 45(14): 132-139.
LIU H, CHEN C, JU Y T, et al.Characteristics analysis and suppression strategy of voltage unbalance in areas with integration of wind power[J]. Automation of electric power systems, 2021, 45(14): 132-139.
[13] GB/T 15543—2008, 电能质量三相电压不平衡[S].
GB/T 15543—2008, Power quality—Three-phase voltage unbalance[S].
[14] 邢毓华, 任甜甜. 改进MOPSO在微电网优化调度中的应用研究[J]. 太阳能学报, 2024, 45(6): 191-200.
XING Y H, REN T T.Application research of improved mopso in microgrid optimal dispatch[J]. Acta energiae solaris sinica, 2024, 45(6): 191-200.
[15] HAN H, LIU H Y, ZUO X Y, et al.Optimal sizing considering power uncertainty and power supply reliability based on LSTM and MOPSO for SWPBMs[J]. IEEE systems journal, 2022, 16(3): 4013-4023.
[16] DAI S Y, NIU D X.Comprehensive evaluation of the sustainable development of power grid enterprises based on the model of fuzzy group ideal point method and combination weighting method with improved group order relation method and entropy weight method[J]. Sustainability, 2017, 9(10): 1900.
[17] WANG W Y, LI H C, HOU X L, et al.Multi-criteria evaluation of distributed energy system based on order relation-anti-entropy weight method[J]. Energies, 2021, 14(1): 246.
[18] TIAN G D, ZHANG H H, ZHOU M C, et al.AHP, gray correlation, and TOPSIS combined approach to green performance evaluation of design alternatives[J]. IEEE transactions on systems, man, and cybernetics: systems, 2018, 48(7): 1093-1105.
[19] 蒋晨, 缪书唯. 基于TOPSIS法的风速概率分布评价方法[J]. 太阳能学报, 2023, 44(8): 499-508.
JIANG C, MIAO S W.Evaluation method for wind speed probability distribution based on TOPSIS method[J]. Acta energiae solaris sinica, 2023, 44(8): 499-508.
[20] 逄思敏. 大规模风电汇集系统三相电压不平衡机理及抑制技术[D]. 北京: 华北电力大学, 2022.
PANG S M.Mechanism of three-phase voltage imbalance in large-scale wind power collection system and its suppression technology[D]. Beijing: North China Electric Power University, 2022.
[21] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分: 陆上风电[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system-part 1. on shore wind power[S].
PDF(2049 KB)

Accesses

Citation

Detail

Sections
Recommended

/