EFFECT OF COMMON CHANNEL STRUCTURE ON FLOW DISTRIBUTION IN FUEL CELLS

Zhang Beibei, Xue Xueliang, Liu Feng, Zheng Jun

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 516-520.

PDF(1857 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1857 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 516-520. DOI: 10.19912/j.0254-0096.tynxb.2024-0414
Special Topics of Academic Papers at the 81th Annual Meeting of the China Association for Science and Technology

EFFECT OF COMMON CHANNEL STRUCTURE ON FLOW DISTRIBUTION IN FUEL CELLS

  • Zhang Beibei, Xue Xueliang, Liu Feng, Zheng Jun
Author information +
History +

Abstract

A three-dimensional model of high-power fuel cell stacks is developed in this paper to numerically investigate the effects of the length (L) and width (D) of the common channel, channel area, and the inlet-outlet area ratio on gas flow distribution of the stacks. The results indicate that increasing the length and width of the common channel contributes to improving the uniformity of gas distribution. increasing the area of the common channel also significantly improves the flow distribution uniformity of the fuel cell stack. On the other hand, decreasing the area ratio between the inlet and outlet is conducive to reducing the pressure difference between the inlet and outlet common channels, which improves the flow distribution of the stack and reduces the pressure drop of the stack.

Key words

PEMFC / turbulence models / porous materials / flow structure / computational fluid dynamics

Cite this article

Download Citations
Zhang Beibei, Xue Xueliang, Liu Feng, Zheng Jun. EFFECT OF COMMON CHANNEL STRUCTURE ON FLOW DISTRIBUTION IN FUEL CELLS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 516-520 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0414

References

[1] 仲蕊. 燃料电池企业瞄准大功率应用市场[N]. 中国能源报, 2023-01-09(11).
ZHONG X. Fuel cell companies target high-power applications[N]. China energy news, 2023-01-09(11).
[2] CHANG P A C, ST-PIERRE J, STUMPER J, et al. Flow distribution in proton exchange membrane fuel cell stacks[J]. Journal of power sources, 2006, 162(1): 340-355.
[3] LIM B H, MAJLAN E H, DAUD W R W, et al. Numerical analysis of flow distribution behavior in a proton exchange membrane fuel cell[J]. Heliyon, 2018, 4(10): e00845.
[4] LIU F, XUE X L, ZHANG B B, et al.Improvement of air distribution consistency in large-scale proton exchange membrane fuel cell stack manifold[J]. Electrochemistry communications, 2022, 144: 107396.
[5] HUANG F X, QIU D K, XU Z T, et al.Analysis and improvement of flow distribution in manifold for proton exchange membrane fuel cell stacks[J]. Energy, 2021, 226: 120427.
[6] PARK J, LI X G.Effect of flow and temperature distribution on the performance of a PEM fuel cell stack[J]. Journal of power sources, 2006, 162(1): 444-459.
[7] QIN Y Z, LIU G K, CHANG Y F, et al.Modeling and design of PEM fuel cell stack based on a flow network method[J]. Applied thermal engineering, 2018, 144: 411-423.
[8] 潘伟童. 质子交换膜燃料电池放大效应及流动均布与水管理过程研究[D]. 上海: 华东理工大学, 2022.
PAN W T.Study on scale-up effects and flow distribution and water management processes of proton exchange membrane fuel cells[D]. Shanghai: East China University of Science and Technology, 2022.
[9] 胡祎玮, 夏玉珍, 陆佳宙, 等. 基于计算流体力学的大型质子交换膜燃料电池电堆歧管尺寸优化分析[J]. 汽车技术, 2022(6): 20-26.
HU Y W, XIA Y Z, LU J Z, et al.Optimization analysis of manifold dimension of large PEMFC stack based on CFD[J]. Automobile technology, 2022(6): 20-26.
[10] 叶可, 颜永文, 李君, 等. 基于不同流道的PEMFC传质与水热平衡数值模拟[J]. 太阳能学报, 2021, 42(10): 349-354.
YE K, YAN Y W, LI J, et al.Numerical simulation of mass transfer and hydrothermal balance in PEMFC based on different flow channels[J]. Acta energiae solaris sinica, 2021, 42(10): 349-354.
[11] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(8): 62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of pemfc[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[12] YOON Y G, LEE W Y, PARK G G, et al.Effects of channel and rib widths of flow field plates on the performance of a PEMFC[J]. International journal of hydrogen energy, 2005, 30(12): 1363-1366.
[13] 李子君, 王树博, 李微微, 等. 一种新型流道对燃料电池气体扩散层除水性能的模拟研究[J]. 高校化学工程学报, 2020, 34(4): 870-876.
LI Z J, WANG S B, LI W W, et al.Simulation on evaporative water removal from fuel cell gas diffusion layer by a novel wave flow channel[J]. Journal of chemical engineering of Chinese universities, 2020, 34(4): 870-876.
[14] CHEN X, YU Z K, YANG C, et al.Performance investigation on a novel 3D wave flow channel design for PEMFC[J]. International journal of hydrogen energy, 2021, 46(19): 11127-11139.
[15] SHEN J, TU Z K, CHAN S H.Performance enhancement in a proton exchange membrane fuel cell with a novel 3D flow field[J]. Applied thermal engineering, 2020, 164: 114464.
[16] TOGHYANI S, MORADI NAFCHI F, AFSHARI E, et al.Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer[J]. International journal of hydrogen energy, 2018, 43(9): 4534-4545.
[17] XIA L C, ZHANG C Z, HU M H, et al.Investigation of parameter effects on the performance of high-temperature PEM fuel cell[J]. International journal of hydrogen energy, 2018, 43(52): 23441-23449.
[18] ZHANG Z Q, LIU W, WANG Y L.Three dimensional two-phase and non-isothermal numerical simulation of multi-channels PEMFC[J]. International journal of hydrogen energy, 2019, 44(1): 379-388.
[19] CHEN H C, HE Y X, ZHANG X F, et al.A method to study the intake consistency of the dual-stack polymer electrolyte membrane fuel cell system under dynamic operating conditions[J]. Applied energy, 2018, 231: 1050-1058.
[20] CHEN C H, JUNG S P, YEN S C.Flow distribution in the manifold of PEM fuel cell stack[J]. Journal of power sources, 2007, 173(1): 249-263.
PDF(1857 KB)

Accesses

Citation

Detail

Sections
Recommended

/