PARAMETER IDENTIFICATION METHOD FOR PEMFC VOLTAGE MODEL BASED ON LLIMA

Zhao Lei, Wen Sufang, Liu Guangchen, Zhang Shaojie

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 541-549.

PDF(8115 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(8115 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 541-549. DOI: 10.19912/j.0254-0096.tynxb.2024-0448
Special Topics of Academic Papers at the 84th Annual Meeting of the China Association for Science and Technology

PARAMETER IDENTIFICATION METHOD FOR PEMFC VOLTAGE MODEL BASED ON LLIMA

  • Zhao Lei1, Wen Sufang1,2, Liu Guangchen1,2, Zhang Shaojie1
Author information +
History +

Abstract

To address the issue that most heuristic algorithms are prone to converge prematurely when facing the voltage model parameter identification problem of proton exchange membrane fuel cell (PEMFC), resulting in low parameter identification accuracy, this paper proposes an improved mayfly algorithm based on chaos mapping and adaptive Levy flight (LLIMA). Firstly, the logistic equation is introduced to generate chaotic sequences, which are then mapped to the problem space to enhance the exploration capability of population initialization. Secondly, the adaptive Levy flight algorithm is added to the velocity update of the mayfly, which helps the algorithm escape from the local optimum by utilizing the property of Levy flight of large probability with small step size and small probability with large step size. Additionally, the inclusion of an adaptive strategy dynamically adjusts the mayfly velocities, further shortening the optimization time of the algorithm. Finally, the effectiveness of the algorithm is verified by the optimization results of four test functions in two different dimensions. Applying the LLIMA algorithm to parameter identification of the SR-12 fuel cell voltage model demonstrates that compared to the mayfly algorithm, improved mayfly algorithm, and particle swarm algorithm, the proposed LLIMA algorithm achieves higher identification accuracy, faster convergence speed, and stronger robustness for experimental data both with and without added white noise.

Key words

proton exchange membrane fuel cell (PEMFC) / heuristic algorithms / identification / Levy flight / chaotic map

Cite this article

Download Citations
Zhao Lei, Wen Sufang, Liu Guangchen, Zhang Shaojie. PARAMETER IDENTIFICATION METHOD FOR PEMFC VOLTAGE MODEL BASED ON LLIMA[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 541-549 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0448

References

[1] 杜真真, 王珺, 王晶, 等. 质子交换膜燃料电池关键材料的研究进展[J]. 材料工程, 2022, 50(12): 35-50.
DU Z Z, WANG J, WANG J, et al.Research progress of key materials in proton exchange membrane fuel cell[J]. Journal of materials engineering, 2022, 50(12): 35-50.
[2] 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
GAO W T, LEI Y J, ZHANG X, et al.An overview of proton exchange membrane fuel cell[J]. Chemical industry and engineering progress, 2022, 41(3): 1539-1555.
[3] 胡捷. 质子交换膜燃料电池建模与控制研究[D]. 合肥: 合肥工业大学, 2019.
HU J.Modeling and control of proton exchange membrane fuel cells[D]. Hefei: Hefei University of Technology, 2019.
[4] 马睿, 任子俊, 谢任友, 等. 基于模型特征分析的质子交换膜燃料电池建模研究综述[J]. 中国电机工程学报, 2021, 41(22): 7712-7730.
MA R, REN Z J, XIE R Y, et al.A comprehensive review for proton exchange membrane fuel cell modeling based on model feature analysis[J]. Proceedings of the CSEE, 2021, 41(22): 7712-7730.
[5] 杨宇伦, 凌铭. 基于改进鸡群优化算法的质子交换膜燃料电池模型参数辨识[J]. 太阳能学报, 2023, 44(2): 269-278.
YANG Y L, LING M.Parameter identification of proton exchange membrane fuel cells model based on improved chicken swarm optimization algorithm[J]. Acta energiae solaris sinica, 2023, 44(2): 269-278.
[6] 孙成硕, 戚志东, 叶伟琴, 等. 基于ALMBO算法的PEMFC分数阶时域子空间模型研究[J]. 太阳能学报, 2023, 44(1): 467-474.
SUN C S, QI Z D, YE W Q, et al.Research on fractional order time domain subspace model of PEMFC based on ALMBO algorithm[J]. Acta energiae solaris sinica, 2023, 44(1): 467-474.
[7] 王新, 侯永平, 王要娟, 等. 基于马群优化的燃料电池极化曲线拟合算法[J]. 电池, 2023, 53(2): 132-136.
WANG X, HOU Y P, WANG Y J, et al.Fitting algorithm of polarization curve for fuel cell based on horse herd optimization[J]. Battery bimonthly, 2023, 53(2): 132-136.
[8] 杨博, 曾春源, 陈义军, 等. 极限学习机及其在质子交换膜燃料电池参数辨识中的应用[J]. 上海交通大学学报, 2023, 57(4): 482-494.
YANG B, ZENG C Y, CHEN Y J, et al.Extreme learning machine and its application in parameter identification of proton exchange membrane fuel cell[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 482-494.
[9] CHENG J X, ZHANG G X.Parameter fitting of PEMFC models based on adaptive differential evolution[J]. International journal of electrical power & energy systems, 2014, 62: 189-198.
[10] ZERVOUDAKIS K, TSAFARAKIS S.A mayfly optimization algorithm[J]. Computers & industrial engineering, 2020, 145: 106559.
[11] 刘公致, 吴琼, 王光义, 等. 改进型Logistic混沌映射及其在图像加密与隐藏中的应用[J]. 电子与信息学报, 2022, 44(10): 3602-3609.
LIU G Z, WU Q, WANG G Y, et al.A improved logistic chaotic map and its application to image encryption and hiding[J]. Journal of electronics & information technology, 2022, 44(10): 3602-3609.
[12] 张玉, 卢子广, 卢泉, 等. 基于Levy飞行改进鸟群算法的光伏直流微电网优化配置研究[J]. 太阳能学报, 2021, 42(5): 214-220.
ZHANG Y, LU Z G, LU Q, et al.Research on optimal configuration of photovoltaic DC microgrid based on Levy flight improved bird swarm algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 214-220.
[13] 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
XU B.Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm[J]. CIESC journal, 2021, 72(3): 1512-1520.
PDF(8115 KB)

Accesses

Citation

Detail

Sections
Recommended

/