INVESTIGATION OF INFLUENCE OF PRE-BEND AND BACKWARD SWEPT GEOMETRIES ON WIND TURBINE BLADE LOADS CONSIDERING BEND-TWIST COUPLING

Ma Xinwen, Sun Jingwei, Chen Yan, Peng Xianghua

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 1-10.

PDF(3315 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3315 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 1-10. DOI: 10.19912/j.0254-0096.tynxb.2024-0449

INVESTIGATION OF INFLUENCE OF PRE-BEND AND BACKWARD SWEPT GEOMETRIES ON WIND TURBINE BLADE LOADS CONSIDERING BEND-TWIST COUPLING

  • Ma Xinwen1~3, Sun Jingwei1,2, Chen Yan1,2, Peng Xianghua4
Author information +
History +

Abstract

To investigate the effects of pre-bend and varying backward swept geometrical design on the aeroelastic loads of flexible wind turbine blades, a rotation matrix was utilized to accurately describe the airflow velocity, blade displacement, orientation and vibration velocity at blade elements, which were introduced to modify the blade element momentum model and ultimately form an aeroelastic simulation model. Based on the DTU 10 MW blade, three blades with different backward swept geometries were designed, and static, dynamic, and aeroelastic coupling analyses were conducted on each blade variant. The study explores the effects of bend-twist coupling deformations on the blade angle of attack and the influence of increased aerodynamic force arms due to pre-bend and backward swept geometric design on root torque. The study reveals that the bend-twist coupling effects of the blades are significantly influenced by the blade's geometric shape. The backward swept blade shows the best performance in reducing flap-wise root fatigue loads by up to -11.14%, albeit significantly increasing the torsional root fatigue loads. Conversely, the pre-bend blade demonstrates a decrease in both flapwise and torsional root fatigue loads.

Key words

wind turbine blades / aeroelasticity / fatigue load / blade element momentum model correction / bend-twist coupling

Cite this article

Download Citations
Ma Xinwen, Sun Jingwei, Chen Yan, Peng Xianghua. INVESTIGATION OF INFLUENCE OF PRE-BEND AND BACKWARD SWEPT GEOMETRIES ON WIND TURBINE BLADE LOADS CONSIDERING BEND-TWIST COUPLING[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 1-10 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0449

References

[1] 冯云凌, 夏鸿建, 李德源, 等. 风力机后掠式叶片的弯扭耦合特性分析[J]. 太阳能学报, 2020, 41(11): 220-227.
FENG Y L, XIA H J, LI D Y, et al.Bend-twist coupling analysis for back-swept wind turbine blades[J]. Acta energiae solaris sinica, 2020, 41(11): 220-227.
[2] 王子文, 杨涛, VASILIS R, 等. 基于ANSYS的10 MW风力机叶片弯扭耦合特性研究[J]. 应用能源技术, 2019(6): 33-37.
WANG Z W, YANG T, VASILIS R, et al.Research on bend-twist coupling properties of 10 MW wind turbine blade based on ANSYS[J]. Applied energy technology, 2019(6): 33-37.
[3] 王占飞, 夏鸿建, 李德源, 等. 叶片后掠对风轮结构与气动特性的影响研究[J]. 太阳能学报, 2020, 41(11): 285-292.
WANG Z F, XIA H J, LI D Y, et al.Research on effects of structure and aerodynamic characteristics of back-swept blade wind turbines[J]. Acta energiae solaris sinica, 2020, 41(11): 285-292.
[4] 张立, 缪维跑, 李春, 等. 基于气动弹性剪裁的大型风力机弯扭耦合叶片力学性能分析[J]. 动力工程学报, 2021, 41(8): 674-683.
ZHANG L, MIAO W P, LI C, et al.Mechanical performance analysis of large wind turbine bend-twist coupling blade based on aeroelastic tailoring[J]. Journal of Chinese Society of Power Engineering, 2021, 41(8): 674-683.
[5] 王海生, 缪维跑, 李春, 等. 大型风力机叶片腹板偏置对弯扭耦合特性研究[J]. 机械强度, 2023, 45(4): 887-893.
WANG H S, MIAO W P, LI C, et al.Study on bend-twist coupling characteristics of web offset for large wind turbine blades[J]. Journal of mechanical strength, 2023, 45(4): 887-893.
[6] FRITZ E K, FERREIRA C, BOORSMA K.An efficient blade sweep correction model for blade element momentum theory[J]. Wind energy, 2022, 25(12): 1977-1994.
[7] 王建礼, 石可重, 廖猜猜, 等. 风力机叶片耦合振动力学模拟及实验研究[J]. 工程热物理学报, 2013, 34(1): 67-70.
WANG J L, SHI K Z, LIAO C C, et al.Study on coupled vibration simulation and experiment of wind turbine blade[J]. Journal of engineering thermophysics, 2013, 34(1): 67-70.
[8] SCHUBEL P J, CROSSLEY R J.Wind Turbine blade design review[J]. Wind engineering, 2012, 36(4): 365-388.
[9] BAK C, ZAHLE F, BITSCHE R, et al.The DTU 10-MW reference wind Turbine[R].DTU Wind Energy Report-I-0092, 2013.
[10] HANSEN M.Aeroelastic properties of backward swept blades[C]//49th AIAA Aerospace Sciences Meeting. Florida, USA, 2011.
[11] LI A, PIRRUNG G, MADSEN H A, et al.Fast trailed and bound vorticity modeling of swept wind turbine blades[J]. Journal of physics: conference series, 2018, 1037: 062012.
[12] ARGYRIS J.An excursion into large rotations[J]. Computer methods in applied mechanics and engineering, 1982, 32(1): 85-155.
[13] CARDONA A, GERADIN M.A beam finite element non‐linear theory with finite rotations[J]. International journal for numerical methods in engineering, 1988, 26(11): 2403-2438.
[14] HANSEN M O L. Aerodynamics of wind turbines[M]. 3rd edition. New York, USA: Routledge, 2015: 1-120.
[15] LE T N, BATTINI J M, HJIAJ M.Dynamics of 3D beam elements in a corotational context: a comparative study of established and new formulations[J]. Finite elements in analysis and design, 2012, 61: 97-111.
[16] PANTELI A N, MANOLAS D I, RIZIOTIS V A, et al.Comparative study of two geometrically non-linear beam approaches for the coupled wind turbine system[J]. Journal of wind engineering and industrial aerodynamics, 2022, 231: 105231.
PDF(3315 KB)

Accesses

Citation

Detail

Sections
Recommended

/