VIRTUAL INERTIA CONTROL STRATEGY FOR ENERGY STORAGE CONVERTERS IN ISLANDED DC MICROGRIDS BASED ON RATE OF CHANGE OF VOLTAGE

Zhang Ruifang, Wang Guoling, Luo Chenghan, Cao Wensheng

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 298-306.

PDF(4436 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4436 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 298-306. DOI: 10.19912/j.0254-0096.tynxb.2024-0486
Special Topics of Academic Papers at the 56th Annual Meeting of the China Association for Science and Technology

VIRTUAL INERTIA CONTROL STRATEGY FOR ENERGY STORAGE CONVERTERS IN ISLANDED DC MICROGRIDS BASED ON RATE OF CHANGE OF VOLTAGE

  • Zhang Ruifang1, Wang Guoling1, Luo Chenghan1, Cao Wensheng2
Author information +
History +

Abstract

Virtual inertia control method can effectively improve system inertia and guarantee bus voltage stability . In this paper, for the transient power oscillation caused by the interactions between the virtual inertia compensation loop and the control inner loop of the traditional virtual inertia control method, a virtual inertia control strategy based on the rate of change of voltage (VI-ROCOV) is proposed to further optimize the transient characteristics of the system through the improvement of the virtual damping characteristics of the system. By establishing a small-signal model of the system, the influence of key parameters on the stability and transient characteristics of the system is analyzed, and the parameter optimization design guidelines are obtained. Finally, an experimental model is established to compare and analyze the different control methods. The results show that the proposed control strategy effectively improves the transient performance of the system and ensures the bus voltage stability.

Key words

microgrids / DC-DC converters / transient stability / virtual inertia / battery storage / dynamic response

Cite this article

Download Citations
Zhang Ruifang, Wang Guoling, Luo Chenghan, Cao Wensheng. VIRTUAL INERTIA CONTROL STRATEGY FOR ENERGY STORAGE CONVERTERS IN ISLANDED DC MICROGRIDS BASED ON RATE OF CHANGE OF VOLTAGE[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 298-306 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0486

References

[1] 严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析[J]. 太阳能学报, 2021, 42(8): 191-199.
YAN G G, ZHANG S F, JIA Q, et al.Mechanism analysis of PV generation actively participating in power grid frequency regulation[J]. Acta energiae solaris sinica, 2021, 42(8): 191-199.
[2] WANG X H, ZHENG Y M, LU Z S.Simulation research on the operation characteristics of a DC microgrid[C]//2019 IEEE Third International Conference on DC Microgrids (ICDCM), Matsue, Japan, 2019: 1-4.
[3] KUMAR D, ZARE F, GHOSH A.DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects[J]. IEEE access, 2017, 5: 12230-12256.
[4] MENG L X, SHAFIEE Q, TRECATE G F, et al.Review on control of DC microgrids and multiple microgrid clusters[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(3): 928-948.
[5] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178.
ZHU X R, LI Z, MENG F Q.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178.
[6] 张赟, 王毅, 孟建辉, 等. 考虑多约束指标的直流微电网虚拟电容控制方法[J]. 电工技术学报, 2022, 37(增刊1): 277-287.
ZHANG Y, WANG Y, MENG J H, et al.Virtual capacitance control method of DC microgrid considering multiple constraints[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 277-287.
[7] ZHANG Y P, ZHANG X W, QIAN T, et al.Modeling and simulation of a passive variable inertia flywheel for diesel generator[J]. Energy reports, 2020, 6: 58-68.
[8] 许振宇, 石梦璇, 周建宇, 等. 基于飞轮储能的网/储协调虚拟同步机控制策略的小信号模型分析[J]. 中国电机工程学报, 2020, 40(20): 6236-6248.
XU Z Y, SHI M X, ZHOU J Y, et al.Small signal model analysis of network/storage coordination virtual synchronous generator control based on flywheel energy storage system[J]. Proceedings of the CSEE, 2020, 40(20): 6236-6248.
[9] 赵恩盛, 韩杨, 周思宇, 等. 微电网惯量与阻尼模拟技术综述及展望[J]. 中国电机工程学报, 2022, 42(4): 1413-1428.
ZHAO E S, HAN Y, ZHOU S Y, et al.Review and prospect of inertia and damping simulation technologies of microgrids[J]. Proceedings of the CSEE, 2022, 42(4): 1413-1428.
[10] 徐敏, 赵巧娥. 虚拟直流电机惯性阻尼自适应控制策略[J]. 自动化与仪表, 2022, 37(8): 9-12.
XU M, ZHAO Q E.Adaptive control strategy for inertial and damping of virtual DC motor[J]. Automation & instrumentation, 2022, 37(8): 9-12.
[11] 彭海涛, 何山, 程静, 等. 考虑虚拟惯性时间常数和频率二次跌落的风电频率综合控制策略[J]. 太阳能学报, 2023, 44(8): 509-517.
PENG H T, HE S, CHENG J, et al.Wind power integrated frequency control strategy considering virtual inertia time constants and frequency secondary drop[J]. Acta energiae solaris sinica, 2023, 44(8): 509-517.
[12] 左芸裴, 王德林, 周鑫, 等. 基于虚拟惯量和阻尼参数自适应策略的直流微网电压控制研究[J]. 太阳能学报, 2023, 44(11): 485-494.
ZUO Y P, WANG D L, ZHOU X, et al.Research on voltage regulation control of DC microgrid based on virtual inertia and damping parameters’adaptive strategy[J]. Acta energiae solaris sinica, 2023, 44(11): 485-494.
[13] 曾国辉, 廖鸿飞, 赵晋斌, 等. 直流微网双向DC/DC变换器虚拟惯量和阻尼系数自适应控制策略[J]. 电力系统保护与控制, 2022, 50(6): 65-73.
ZENG G H, LIAO H F, ZHAO J B, et al.A self-adaptive control strategy of virtual inertia and a damping coefficient for bidirectional DC/DC converters in a DC microgrid[J]. Power system protection and control, 2022, 50(6): 65-73.
[14] 张纯江, 暴云飞, 孟宪慧, 等. 直流微网储能DC/DC变换器的自适应虚拟直流电机控制[J]. 电力系统保护与控制, 2023, 51(1): 12-20.
ZHANG C J, BAO Y F, MENG X H, et al.Adaptive virtual DC machine control for a DC microgrid energy storage DC/DC converter[J]. Power system protection and control, 2023, 51(1): 12-20.
[15] 张赟宁, 蔡明磊, 向芳洲, 等. 基于辅助惯性功率调节的虚拟同步发电机模糊控制策略[J]. 电机与控制学报, 2021, 25(7): 98-106.
ZHANG Y N, CAI M L, XIANG F Z, et al.Virtual synchronous generator fuzzy control strategy based on auxiliary inertial power regulation[J]. Electric machines and control, 2021, 25(7): 98-106.
[16] ZHU X R, MENG F Q, XIE Z Y, et al.An inertia and damping control method of DC-DC converter in DC microgrids[J]. IEEE transactions on energy conversion, 2020, 35(2): 799-807.
[17] 付媛, 甄栋夫, 张祥宇, 等. 直流微电网中风电机组的暂态电量惯性控制策略[J]. 高电压技术, 2022, 48(1): 156-165.
FU Y, ZHEN D F, ZHANG X Y, et al.Transient electric quantity inertial control strategy for wind turbines in DC microgrid[J]. High voltage engineering, 2022, 48(1): 156-165.
[18] 张祥宇, 李浩, 付媛. 含新型虚拟电机的直流微网动态稳定性分析与自适应电压惯性控制[J]. 高电压技术, 2021, 47(8): 2865-2874.
ZHANG X Y, LI H, FU Y.Dynamic stability analysis and self-adaptive voltage inertia control of DC microgrids with novel virtual machine[J]. High voltage engineering, 2021, 47(8): 2865-2874.
[19] WANG Y, WANG C, XU L, et al.Adjustable inertial response from the converter with adaptive droop control in DC grids[J]. IEEE transactions on smart grid, 2019, 10(3): 3198-3209.
[20] 支娜, 丁有国, 明旭. 基于微分补偿的虚拟直流电机控制策略[J]. 电力电子技术, 2021, 55(4): 5-7, 11.
ZHI N, DING Y G, MING X.Control strategy of virtual DC motor based on differential compensation[J]. Power electronics, 2021, 55(4): 5-7, 11.
[21] 朱晓荣, 孟凡奇, 谢志云. 基于虚拟同步发电机的直流微网DC-DC变换器控制策略[J]. 电力系统自动化, 2019, 43(21): 132-140.
ZHU X R, MENG F Q, XIE Z Y.Control strategy of DC-DC converter in DC microgrid based on virtual synchronous generator[J]. Automation of electric power systems, 2019, 43(21): 132-140.
[22] WU W H, CHEN Y D, LUO A, et al.A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines[J]. IEEE transactions on industrial electronics, 2017, 64(7): 6005-6016.
PDF(4436 KB)

Accesses

Citation

Detail

Sections
Recommended

/