APPLICABILITY EVALUATION OF PHOTOVOLTAIC POWER GENERATION PREDICTION MODEL IN YANGTZE RIVER DELTA REGION: A CASE STUDY OF JINHUA CITY, ZHEJIANG PROVINCE

Xu Chongbin, Chen Qian, Sun Xiaomin, Zhang Xiaobo, Li Guoshuai, Zuo Xin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 293-298.

PDF(1792 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1792 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 293-298. DOI: 10.19912/j.0254-0096.tynxb.2024-0501

APPLICABILITY EVALUATION OF PHOTOVOLTAIC POWER GENERATION PREDICTION MODEL IN YANGTZE RIVER DELTA REGION: A CASE STUDY OF JINHUA CITY, ZHEJIANG PROVINCE

  • Xu Chongbin1,2, Chen Qian1,2, Sun Xiaomin1,2, Zhang Xiaobo3, Li Guoshuai2, Zuo Xin1,2
Author information +
History +

Abstract

The photovoltaic power generation process is significantly affected by external environmental factors such as meteorological conditions and geographic location, leading to pronounced uncertainty. This article leverages the power generation data from six photovoltaic power stations in Jinhua City and employs various prediction models for comparative analysis, to analyze and demonstrate the supportive role neighby power stations in the predicton of photovoltaic power generation. The study indicates that: 1) Photovoltaic power stations located within the same region are affected by meteorological environmental factors and exhibit similar trends. 2) Time series forecasting based on deep learning obviates the need for manual feature extraction or an intricate understanding of the entire power generation process. Instead, employing a data-driven approach and model training can capture the changing trends of the power curves. Transformer-based models like Crossformer and PatchTST are more aptly suited for the task of predicting photovoltaic power output.

Key words

photovoltaic power generation prediction / deep learning / LSTM / Transformer

Cite this article

Download Citations
Xu Chongbin, Chen Qian, Sun Xiaomin, Zhang Xiaobo, Li Guoshuai, Zuo Xin. APPLICABILITY EVALUATION OF PHOTOVOLTAIC POWER GENERATION PREDICTION MODEL IN YANGTZE RIVER DELTA REGION: A CASE STUDY OF JINHUA CITY, ZHEJIANG PROVINCE[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 293-298 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0501

References

[1] 程耀华, 张宁, 康重庆, 等. 低碳多能源系统的研究框架及展望[J]. 中国电机工程学报, 2017, 37(14): 4060-4069, 4285.
CHENG Y H, ZHANG N, KANG C Q, et al.Research framework and prospects of low-carbon multiple energy systems[J]. Proceedings of the CSEE, 2017, 37(14): 4060-4069, 4285.
[2] ZAZOUM B.Solar photovoltaic power prediction using different machine learning methods[J]. Energy reports, 2022, 8: 19-25.
[3] 薛阳, 李金星, 杨江天, 等. 基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测[J]. 南方电网技术, 2024, 18(11): 97-105.
XUE Y, LI J X, YANG J T, et al.Short-term prediction of photovoltaic power based on similar day analysis and improved whale algorithm to optimize LSTM network model[J]. Southern power system technology, 2024, 18(11): 97-105.
[4] 战文华, 车建峰, 王勃, 等. 基于网格化数值天气预报的区域光伏发电多输出功率预测方法[J]. 中国电力, 2024, 57(3):144-151.
ZHAN W H, CHE J F, WANG B, et al.Application of message compliance detection and intrusion blocking technology in remote operation and maintenance system of relay protection[J]. Electric power, 2024, 57(3): 144-151.
[5] 吕清泉, 张珍珍, 马彦宏, 等. 区域光伏发电出力特性分析研究[J]. 发电技术, 2022, 43(3): 413-420.
LYU Q Q, ZHANG Z Z, MA Y H, et al.Analysis and research on output characteristics of regional photovoltaic power generation[J]. Power generation technology, 2022, 43(3): 413-420.
[6] MAYER M J, GRÓF G. Extensive comparison of physical models for photovoltaic power forecasting[J]. Applied energy, 2021, 283: 116239.
[7] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[8] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[9] 耿华阳, 王玮. 基于数据残余分量与ARMA模型的光伏功率日前预测方法[J]. 工业仪表与自动化装置, 2019(1): 3-7.
GENG H Y, WANG W.Photovoltaic power day-ahead prediction method based on data residual component and ARMA model[J]. Industrial instrumentation & automation, 2019(1): 3-7.
[10] 赵滨滨, 王莹, 王彬, 等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源, 2019, 37(6): 820-823.
ZHAO B B, WANG Y, WANG B, et al.Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable energy resources, 2019, 37(6): 820-823.
[11] 李文, 邓升, 段妍, 等. 时间序列预测与深度学习: 文献综述与应用实例[J]. 计算机应用与软件, 2020, 37(10): 64-70, 84.
LI W, DENG S, DUAN Y, et al.Time series forecasting and deep learning: literature review and empirical example[J]. Computer applications and software, 2020, 37(10): 64-70, 84.
[12] ALCAÑIZ A, GRZEBYK D, ZIAR H, et al. Trends and gaps in photovoltaic power forecasting with machine learning[J]. Energy reports, 2023, 9: 447-471.
[13] 陈元峰, 马溪原, 程凯, 等. 基于气象特征量选取与SVM模型参数优化的新能源超短期功率预测[J]. 太阳能学报, 2023, 44(12): 568-576.
CHEN Y F, MA X Y, CHENG K, et al.Ultra-short-term power forecast of new energy based on meteorological feature selection and SVM model parameter optimization[J]. Acta energiae solaris sinica, 2023, 44(12): 568-576.
[14] 张一平, 宋红, 罗敏, 等. 人工神经网络算法在光伏发电短期功率预测中的应用[J]. 太阳能, 2019(4): 47-53.
ZHANG Y P, SONG H, LUO M, et al.Application of artificial neural network algorithm in short-term power prediction of PV power generation[J]. Solar energy, 2019(4): 47-53.
[15] 张蕊, 李安燚, 刘世岩, 等. 基于波动特征提取下云层分型的短期光伏发电功率预测方法[J]. 太阳能学报, 2024, 45(11): 330-342.
ZHANG R, LI A Y, LIU S Y, et al.A short-term photovoltaic power generation power prediction method based on cloud classification using wave feature extraction[J]. Acta energiae solaris sinica, 2024, 45(11): 330-342.
[16] 张旭. 基于循环神经网络的时间序列预测方法研究[D]. 南京: 南京大学, 2019.
ZHANG X.Time series forecasting based on recurrent neural networks[D]. Nanjing: Nanjing University, 2019.
[17] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[18] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[19] LI S Y, JIN X Y, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[EB/OL].2019: 1907.00235. https://arxiv.org/abs/1907.00235v3.
[20] KITAEV N, KAISER, LEVSKAYA A.Reformer: the efficient transformer[J]. arXiv e-prints, 2020: arXiv: 2001.04451.
[21] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[22] WU H X, XU J H, WANG J M, et al.Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in neural information processing systems, 2021, 34: 22419-22430.
[23] ZENG A L, CHEN M X, ZHANG L, et al.Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37(9): 11121-11128.
[24] NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers[J]. arXiv preprint arXiv:2211.14730, 2022.
[25] ZHANG Y H, YAN J.Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//The Eleventh International Conference on Learning Representations. Kigali, Rwanda. 2023.
PDF(1792 KB)

Accesses

Citation

Detail

Sections
Recommended

/