METEOROLOGICAL DISASTER RISK ASSESSMENT AND ZONING OF PV POWER GENERATION PROJECTS IN INNER MONGOLIA AUTONOMOUS REGION

Dong Fang, Ma Yufeng, Da Bu Xilatu, Liu Shimeng, Wang Manfei, Zhao Yanli

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 564-572.

PDF(2929 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2929 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 564-572. DOI: 10.19912/j.0254-0096.tynxb.2024-0505

METEOROLOGICAL DISASTER RISK ASSESSMENT AND ZONING OF PV POWER GENERATION PROJECTS IN INNER MONGOLIA AUTONOMOUS REGION

  • Dong Fang1, Ma Yufeng1, Da Bu Xilatu2, Liu Shimeng1, Wang Manfei1, Zhao Yanli1
Author information +
History +

Abstract

In order to study the impact of meteorological disasters on PV power generation projects in Inner Mongolia, based on the meteorological disaster risk assessment theory, the comprehensive risk zoning of meteorological disasters in photovoltaic power generation projects in Inner Mongolia was carried out through analytic hierarchy process (AHP) and other research methods from three aspects: Hazard factors, exposure and vulnerability of disaster recipients. A meteorological disaster risk assessment model for photovoltaic power generation projects was established. As the result the overall spatial distribution of meteorological disaster risk for PV power stations in Inner Mongolia showed a slightly decreasing trend from west to east, while the risk degree of snow cover and low temperature in the east increases. The high risk areas are mainly distributed in the central and northern of the Alxa League, the west of Bayan Nur City; in the central and southern of Xilin Gol League. The risk zoning results show that the scope of meteorological disasters in PV power generation projects in Inner Mongolia Autonomous Region is relatively concentrated and small, which is conducive to the safe operation of PV power stations. Meanwhile, during the process of solar resource development and construction, the negative impact of meteorological disasters on project construction and operation, should be considered in advance. The preliminary assessment of meteorological disasters, and the emergency plan for meterological disasters during operation, and minimize the impact of meteorological disasters.

Key words

PV power station / meteorological disasters / risk zoning / risk of disaster inducing factors / Inner Mongolia

Cite this article

Download Citations
Dong Fang, Ma Yufeng, Da Bu Xilatu, Liu Shimeng, Wang Manfei, Zhao Yanli. METEOROLOGICAL DISASTER RISK ASSESSMENT AND ZONING OF PV POWER GENERATION PROJECTS IN INNER MONGOLIA AUTONOMOUS REGION[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 564-572 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0505

References

[1] 卢敏. 探析雷击对江西省光伏电站的影响及防雷减灾策略[J]. 农业灾害研究, 2023, 13(9): 304-306.
LU M.Analysis of the impact of lightning strikes on photovoltaic power stations in Jiangxi Province and strategies for lightning protection and disaster reduction[J]. Journal of agricultural catastrophology, 2023, 13(9): 304-306.
[2] 杨依山. 雷电灾害对光伏电站的影响与雷电防御措施[J]. 中国高新科技, 2023(16): 37-39.
YANG Y S.Impact of lightning disasters on photovoltaic power plants and lightning prevention measures[J]. China high-tech, 2023(16): 37-39.
[3] 王必强, 陈正洪, 孙朋杰, 等. 麻城“7.1” 暴雨过程特征及对光伏电站影响分析[J]. 气象科技进展, 2021, 11(4): 37-40.
WANG B Q, CHEN Z H, SUN P J, et al.Analysis on characteristics of “7.1” torrential rains in Macheng and flood security influence of PV power station[J]. Advances in meteorological science and technology, 2021, 11(4): 37-40.
[4] 霍俊, 严国刚, 孙霞, 等. 湖北省大型光伏电站灾害风险及防范对策的研究[J]. 太阳能, 2019(4): 13-18.
HUO J, YAN G G, SUN X, et al.Study on disaster risks and countermeasures of large-scale PV power station in Hubei province[J]. Solar energy, 2019(4): 13-18.
[5] 孟丹, 陈正洪, 严国刚, 等. 光伏电站气象灾害风险评估研究: 以湖北省为例[J]. 太阳能学报, 2020, 41(5): 359-364.
MENG D, CHEN Z H, YAN G G, et al.Study on risk assessment of meteorological disaster in photovoltaic power stations: a case study of Hubei province[J]. Acta energiae solaris sinica, 2020, 41(5): 359-364.
[6] 张文波, 王亚同, 尹春, 等. 高影响天气对甘肃省风电场及光伏电站的影响分析及安全生产建议[J]. 太阳能, 2021(6): 85-88.
ZHANG W B, WANG Y T, YIN C, et al.Analysis of impact of high-impact weather on wind farms and PV power stations in Gansu province and suggestions for safe production[J]. Solar energy, 2021(6): 85-88.
[7] QX/T 477—2019, 沙尘暴、扬沙和浮尘的观测识别[S].
QX/T 477—2019, Observation and identification of sandstorms, blowing sand and floating dust[S].
[8] GB/T 35227—2017, 地面气象观测规范风向和风速[S].
GB/T 35227—2017, Specifications for surface meteorological observation—wind direction and wind speed[S].
[9] 刘玉兰, 孙银川, 桑建人, 等. 影响太阳能光伏发电功率的环境气象因子诊断分析[J]. 水电能源科学, 2011, 29(12): 200-202, 156.
LIU Y L, SUN Y C, SANG J R, et al.Diagnostic analysis of meteorological factors affecting solar photovoltaic generation power[J]. Water resources and power, 2011, 29(12): 200-202, 156.
[10] 李芬, 陈正洪, 成驰, 等. 武汉并网光伏电站性能与气象因子关系研究[J]. 太阳能学报, 2012, 33(8): 1386-1391.
LI F, CHEN Z H, CHENG C, et al.Relationship between performances of grid-connected PV power plant and meteorological factors in Wuhan[J]. Acta energiae solaris sinica, 2012, 33(8): 1386-1391.
[11] 孙朋杰, 陈正洪, 成驰, 等. 太阳能光伏电站发电量变化特征及其与气象要素的关系[J]. 水电能源科学, 2013, 31(11): 249-252.
SUN P J, CHEN Z H, CHENG C, et al.Relationship between meteorological factors and variation characteristics of electricity generation in solar photovoltaic power plant[J]. Water resources and power, 2013, 31(11): 249-252.
[12] 吕学梅, 朱虹, 王金东, 等. 气象因素对光伏发电量的影响分析[J]. 可再生能源, 2014, 32(10): 1423-1428.
LYU X M, ZHU H, WANG J D, et al.The influence of meteorological factors on the photovoltaic daily generation[J]. Renewable energy resources, 2014, 32(10): 1423-1428.
[13] 王建军. 太阳能光伏发电应用中的温度影响[J]. 青海师范大学学报(自然科学版), 2005, 21(1): 28-30.
WANG J J.The temperature influence on solar PV generation[J]. Journal of Qinghai Normal University (natural science edition), 2005, 21(1): 28-30.
[14] 吕学梅, 孙宗义, 曹张驰. 电池板温度和辐射量对光伏发电量影响的趋势面分析[J]. 可再生能源, 2014, 32(7): 922-927.
LYU X M, SUN Z Y, CAO Z C.A trend surface analysis on effect of battery plate temperature and radiation levels on PV power output[J]. Renewable energy resources, 2014, 32(7): 922-927.
[15] 曹英丽, 方诗琦, 王洋, 等. 分布式光伏发电特性与气象影响因子诊断分析[J]. 沈阳农业大学学报, 2018, 49(3): 363-370.
CAO Y L, FANG S Q, WANG Y, et al.Diagnostic analysis of distributed photovoltaic power characteristics and the impact of meteorological factors[J]. Journal of Shenyang Agricultural University, 2018, 49(3): 363-370.
[16] 王喜炜, 白建波, 宋昊, 等. 基于温度系数试验的光伏组件性能评估[J]. 太阳能学报, 2020, 41(7): 129-135.
WANG X W, BAI J B, SONG H, et al.Performance evaluation of photovoltaic modules based on temperature coefficient test[J]. Acta energiae solaris sinica, 2020, 41(7): 129-135.
[17] 钱正安, 蔡英, 刘景涛, 等. 中国北方沙尘暴研究的若干进展[J]. 干旱区资源与环境, 2004, 18(S1): 1-8.
QIAN Z A, CAI Y, LIU J T, et al.Some advances in dust storm researches in northern China[J]. Journal of arid land resources and environment, 2004, 18(S1): 1-8.
[18] 汪宏宇, 龚强, 杨洪斌. 基于测风塔数据的最大风速与极大风速关系研究[J]. 气象与环境科学, 2019, 42(3): 110-117.
WANG H Y, GONG Q, YANG H B.Study on the relationship between maximum and extreme wind speed based on the wind towers data[J]. Meteorological and environmental sciences, 2019, 42(3): 110-117.
[19] 左燕, 王锐, 严华, 等. 荒漠地区光伏组件表面积尘及清洁技术研究[J]. 太阳能, 2019(6): 55-59, 47.
ZUO Y, WANG R, YAN H, et al.Research on surface area dust and cleaning technology of PV modules in desert areas[J]. Solar energy, 2019(6): 55-59, 47.
[20] 孟广双. 荒漠光伏太阳能电池板表面灰尘作用机理及其清洁方法研究[D]. 西宁: 青海大学, 2015.
MENG G S.Research on mechanism of dust particle adhesion and removal from solar panel surface in desert area[D]. Xining: Qinghai University, 2015.
[21] 顾润源, 武荣盛, 周伟灿, 等. 内蒙古半干旱草原沙尘天气对近地层微气象学特征影响分析[J]. 中国沙漠, 2012, 32(3): 815-823.
GU R Y, WU R S, ZHOU W C, et al.Impact of sand-dust weather on micrometeorological characteristics in semi-arid grassland of Inner Mongolia[J]. Journal of desert research, 2012, 32(3): 815-823.
[22] 赵明智, 王帅, 孙浩, 等. 沙尘对光伏组件表面冲蚀行为影响实验研究[J]. 可再生能源, 2020, 38(1): 19-23.
ZHAO M Z, WANG S, SUN H, et al.Experimental study on erosion behavior of sand dust on photovoltaic modules[J]. Renewable energy resources, 2020, 38(1): 19-23.
[23] 孔锋, 孙劭. 中国近地表不同重现期极大风速强度的时空差异特征研究[J]. 干旱区资源与环境, 2020, 34(12): 148-154.
KONG F, SUN S.Spatial and temporal differential characteristics of near surface instantaneous maximum wind speed intensity in different return periods in China[J]. Journal of arid land resources and environment, 2020, 34(12): 148-154.
[24] 德勒格日玛, 李一平, 孟雪峰, 等. 内蒙古锡林郭勒盟牧区雪灾风险评估研究[J]. 冰川冻土, 2020, 42(4): 1353-1362.
DE L, LI Y P, MENG X F, et al.Study of the risk evaluation of snow disaster in pastoral areas of Xilingol League, Inner Mongolia[J]. Journal of glaciology and geocryology, 2020, 42(4): 1353-1362.
[25] 伏洋, 肖建设, 校瑞香, 等. 基于GIS的青海省雪灾风险评估模型[J]. 农业工程学报, 2010, 26(S1): 197-205.
FU Y, XIAO J S, XIAO R X, et al.Risk assessment model of snow disaster in Qinghai Province based on GIS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 197-205.
[26] 尤莉, 王革丽, 吴学宏, 等. 近40年来阿拉善地区的沙尘暴天气[J]. 干旱区资源与环境, 2004, 18(S1): 253-257.
YOU L, WANG G L, WU X H, et al.Sand storm weather in alashan in recent 40 years[J]. Journal of arid land resources and environment, 2004, 18(S1): 253-257.
[27] 弋峰. 光伏电站抗台风专题研究[J]. 山西科技, 2016, 31(6): 66-70.
YI F.Special research on typhoon resistance of photovoltaic power station[J]. Shanxi science and technology, 2016, 31(6): 66-70.
[28] 牛海霞, 李晓琴, 董正茂. 光伏组件表面积雪及阴天对其发电量预测实验研究[J]. 包头职业技术学院学报, 2017, 18(2): 8-10.
NIU H X, LI X Q, DONG Z M.Experimental research on generating capacity prediction of PV module surface under snow and a cloudy day[J]. Journal of Baotou Vocational & Technical College, 2017, 18(2): 8-10.
[29] 姜彤, 王艳君, 翟建青. 气象灾害风险评估技术指南[M]. 北京: 气象出版社, 2018.
JIANG T, WANG Y J, ZHAI J Q.Qingxiang Zaihai Fengxian Pinggu Jishu Zhinan[M]. Beijing: China Meteorological Press, 2018.
PDF(2929 KB)

Accesses

Citation

Detail

Sections
Recommended

/