NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF FLOW FIELD STRUCTURE OF PEM ELECTROLYZER

Hong Juan, Wei Wei, Liu Yanyan, Cheng Dongya, Wang Yujie, Chen Song

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 559-567.

PDF(16195 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(16195 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (7) : 559-567. DOI: 10.19912/j.0254-0096.tynxb.2024-0517
Special Topics of Academic Papers at the 86th Annual Meeting of the China Association for Science and Technology

NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF FLOW FIELD STRUCTURE OF PEM ELECTROLYZER

  • Hong Juan1, Wei Wei1, Liu Yanyan1, Cheng Dongya1, Wang Yujie1, Chen Song2
Author information +
History +

Abstract

The flow field structure at the anode side of the proton exchange membrane (PEM) electrolyzer has an important influence on the efficiency of hydrogen production from electrolyzed water. Therefore, it is necessary to analyze the physical field distribution inside the electrolyzer in depth according to electrochemical and computational fluid dynamics theories, and further optimize the flow field structure of the PEM electrolyzer. The paper firstly establishes a three-dimensional model of the multi-serpentine flow field structure of PEM electrolyzer through Comsol Multiphysics simulation software, analyzing how the internal electric and flow fields affect electrolytic performance. Secondly, based on the results of simulation analysis, three shunt improvement structures, namely, double shunt, quadruple shunt and quintuple shunt, are proposed and analyzed by numerical simulation for the three structures. The simulation results show that the quadruple shunt structure has the best performance, with a decrease in oxygen accumulation of about 3%, an increase in gas discharge efficiency of 22%, and a decrease in overall cell voltage of about 0.0173 V compared to the original multi-serpentine flow field. On this basis, a PEM electrolyzer experimental platform with a quadruple structure was built. The experiment proves that the electrolyzer voltage is reduced by about 0.0136 V and the energy consumption is reduced, which is basically consistent with the simulation results.

Key words

electrolysis / numerical analysis / flow fields / proton exchange membrane (PEM) electrolyzer / quadruple shunt structure

Cite this article

Download Citations
Hong Juan, Wei Wei, Liu Yanyan, Cheng Dongya, Wang Yujie, Chen Song. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF FLOW FIELD STRUCTURE OF PEM ELECTROLYZER[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 559-567 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0517

References

[1] 赵永勤, 白书霞, 陈柯仰. 电解槽在电解水制氢技术中的应用进展[J]. 中国科技纵横, 2015(14): 65-67.
ZHAO Y Q, BAI S X, CHEN K Y.Progress in the application of electrolysis tanks in electrolytic water to hydrogen technology[J]. China science & technology panorama magazine, 2015(14): 65-67.
[2] 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8): 25-32.
LUO C X.Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-global energy, 2017, 22(8): 25-32.
[3] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of pem electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[4] MACMULLIN R B.Computer simulation of a diaphragm cell for chlor-alkali production[J]. Denki kagaku oyobi kogyo butsuri kagaku, 1970, 38(8): 570-579.
[5] CHIKHI M, RAKIB M, VIERS P, et al.Current distribution in a chlor-alkali membrane cell: experimental study and modeling[J]. Desalination, 2002, 149(1-3): 375-381.
[6] TIJANI A S, BARR D, ABDOL RAHIM A H. Computational modelling of the flow field of an electrolyzer system using CFD[J]. Energy procedia, 2015, 79: 195-203.
[7] TOGHYANI S, AFSHARI E, BANIASADI E.Three-dimensional computational fluid dynamics modeling of proton exchange membrane electrolyzer with new flow field pattern[J]. Journal of thermal analysis and calorimetry, 2019, 135(3): 1911-1919.
[8] LI H, NAKAJIMA H, INADA A, et al.Effect of flow-field pattern and flow configuration on the performance of a polymer-electrolyte-membrane water electrolyzer at high temperature[J]. International journal of hydrogen energy, 2018, 43(18): 8600-8610.
[9] ZHANG Z Q, XING X H.Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell[J]. International journal of hydrogen energy, 2020, 45(39): 20184-20193.
[10] KHATIB F N, WILBERFORCE T, THOMPSON J, et al.Experimental and analytical study of open pore cellular foam material on the performance of proton exchange membrane electrolysers[J]. International journal of thermofluids, 2021, 9: 100068.
[11] OJONG E T, KWAN J T H, NOURI-KHORASANI A, et al. Development of an experimentally validated semi-empirical fully-coupled performance model of a PEM electrolysis cell with a 3-D structured porous transport layer[J]. International journal of hydrogen energy, 2017, 42(41): 25831-25847.
[12] PARK S, LEE W, NA Y.Performance comparison of proton exchange membrane water electrolysis cell using channel and PTL flow fields through three-dimensional two-phase flow simulation[J]. Membranes, 2022, 12(12): 1260.
[13] OLESEN A C, RØMER C, KÆR S K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell[J]. International journal of hydrogen energy, 2016, 41(1): 52-68.
[14] 权波. 质子交换膜电解槽流场结构的优化与设计[D]. 长春: 长春理工大学, 2021.
QUAN B.Optimization and design of flow field structure in proton exchange membrane electrolyzer[D]. Changchun: Changchun University of Science and Technology, 2021.
[15] 袁伟. 操作参数对PEM燃料电池传质的影响[D]. 沈阳: 沈阳建筑大学, 2021.
YUAN W.Effect of operating parameters on mass transfer in the PEMFC[D]. Shenyang: Shenyang Jianzhu University, 2021.
[16] 王玉杰. 高效低耗碱性电解水制氢装置的结构设计及性能研究[D]. 盐城: 盐城工学院, 2023.
WANG Y J.Strcuture design and performance study of high efficiency and low consumption alkaline electrolytic water hydrogen production unit[D]. Yanchen:Yanchen Institute of Technology, 2023.
[17] 童灵华, 孙雷波, 应芳义, 等. PEM电解槽流场的多物理场耦合建模与分析[J]. 重庆理工大学学报(自然科学), 2023, 37(10): 303-311.
TONG L H, SUN L B, YING F Y, et al.Multi-physics coupling modeling and analysis of flow field in PEM electrolyzer[J]. Journal of Chongqing University of Technology (natural science), 2023, 37(10): 303-311.
[18] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.
ZHANG C J, CAI J, ZHANG Y K, et al.Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta energiae solaris sinica, 2021, 42(9): 210-217.
[19] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
PDF(16195 KB)

Accesses

Citation

Detail

Sections
Recommended

/