RESEARCH ON IMAGE PROCESSING ALGORITHMS FOR HELIOSTAT SURFACE SHAPE DETECTION BASED ON BACKWARD-GAZING METHOD

Zhang Cheng, Wang Zhifeng, Zhu Huibin, Li Jinping, Yao Pan, Li Hui

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 506-513.

PDF(4184 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4184 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 506-513. DOI: 10.19912/j.0254-0096.tynxb.2024-0527

RESEARCH ON IMAGE PROCESSING ALGORITHMS FOR HELIOSTAT SURFACE SHAPE DETECTION BASED ON BACKWARD-GAZING METHOD

  • Zhang Cheng1-3, Wang Zhifeng1-3, Zhu Huibin2,3, Li Jinping1, Yao Pan2,3, Li Hui1-3
Author information +
History +

Abstract

This study delves into the application of the backward-gazing method in heliostat surface shape detection. It addresses issues in traditional methods, such as significant fitting errors between the solar shape model and the actual solar shape, and the inapplicability of algorithms for complex, irregular heliostat reflection images. Using image processing techniques, the study analyzes the fitting errors of five solar shape models compared to the actual solar shape. Additionally, it proposes an algorithm for tilt correction and registration suitable for irregular heliostat images, based on techniques like statistical optimization and Hough transform. Experimental results indicate that the Buie model has the highest fitting accuracy and better matches the actual solar brightness distribution. Furthermore, the correction algorithm achieves a tilt correction accuracy of 0.03° and a registration accuracy within ±1 pixel. The findings of this study provide a more accurate solar shape model and heliostat images that can be directly used for surface shape calculations in backward-gazing heliostat shape detection methods.

Key words

solar energy / concentrated solar power / heliostats / image processing / Hough transform / image segmentation

Cite this article

Download Citations
Zhang Cheng, Wang Zhifeng, Zhu Huibin, Li Jinping, Yao Pan, Li Hui. RESEARCH ON IMAGE PROCESSING ALGORITHMS FOR HELIOSTAT SURFACE SHAPE DETECTION BASED ON BACKWARD-GAZING METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 506-513 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0527

References

[1] 王志峰, 何雅玲, 康重庆, 等. 明确太阳能热发电战略定位促进技术发展[J]. 华电技术, 2021, 43(11): 1-4.
WANG Z F, HE Y L, KANG C Q, et al.Strategic positioning of solar thermal power generation to promote technological progress[J]. Huadian technology, 2021, 43(11): 1-4.
[2] 黄鹏霖, 臧春城, 王志峰, 等. 基于光-机耦合的太阳炉聚光性能分析[J]. 太阳能学报, 2023, 44(7): 264-270.
HUANG P L, ZANG C C, WANG Z F, et al.Analysis of concentrating performance of solar furnace based on optical-structural coupling[J]. Acta energiae solaris sinica, 2023, 44(7): 264-270.
[3] 吴卫祥, 李正农, 王志峰. 塔式太阳能定日镜抗风设计参数研究[J]. 太阳能学报, 2021, 42(6): 191-197.
WU W X, LI Z N, WANG Z F.Investigation on wind-resistant design parameters of solar power tower’s heliostat based on wind tunnel experiments[J]. Acta energiae solaris sinica, 2021, 42(6): 191-197.
[4] MARANO M, EMES M J, JAFARI A, et al.Effect of facet gap on heliostat wind loading[J]. Solar energy, 2024, 271: 112428.
[5] EDDHIBI F, BEN HAJ ALI A, BEN AMARA M, et al. A novel mathematical approach for the optical efficiency optimization of solar tower power plant technology[J]. International journal of energy research, 2022, 46(3): 2477-2499.
[6] ULMER S, MÄRZ T, PRAHL C, et al. Automated high resolution measurement of heliostat slope errors[J]. Solar energy, 2011, 85(4): 681-687.
[7] MITCHELL R A, ZHU G D.A non-intrusive optical (NIO) approach to characterize heliostats in utility-scale power tower plants: methodology and in situ validation[J]. Solar energy, 2020, 209: 431-445.
[8] SÁNCHEZ-GONZÁLEZ A, LOZANO-CANCELAS A, MORALES-SÁNCHEZ R, et al. Canting heliostats with computer vision and theoretical imaging[J]. Renewable energy, 2022, 200: 957-969.
[9] ANGEL R, EADS R, KAUTZ M.Accurate measurement of heliostat reflector shapes, using fully-sampled starlight images[C]//AIP Publishing: Proceedings of the AIP Conference Proceedings. Colorado, USA, 2023.
[10] KESSELI D, ZHU G, MITCHELL R, et al.Measurement of heliostat mirrors using reflected targets[C]//Proceedings of the Advances in Solar Energy: Heliostat Systems Design, Implementation, and Operation, California, USA, 2023.
[11] COQUAND M, HENAULT F, CALIOT C.Backward-gazing method for measuring solar concentrators shape errors[J]. Applied optics, 2017, 56(7): 2029-2037.
[12] HÉNAULT F, CALIOT C, COQUAND M, et al. Sun backward gazing method for measuring optomechanical errors of solar concentrators: experimental results[J]. Applied optics, 2020, 59(31): 9861-9877.
[13] DEFIEUX P-H.Méthode optique hybride pour la caractérisation d'un champ d'héliostats dans une installation solaire à concentration[D]. Université de Perpignan, 2021.
[14] JOSE P D.The flux through the focal spot of a solar furnace[J]. Solar energy, 1957, 1(4): 19-22.
[15] HÉNAULT F, CALIOT C, COQUAND M, et al. Sun backward gazing method for measuring optomechanical errors of solar concentrators: experimental results[J]. Applied optics, 2020, 59(31): 9861-9877.
[16] HUKUO N, MII H.Design problems of a solar furnace[J]. Solar energy, 1957, 1(2/3): 108-114.
[17] BUTLER B, PETTIT R.Optical Evaluation Techniques For Reflecting Solar Concentrators[M]. SPIE, 1977.
[18] BUIE D, MONGER A G, DEY C J.Sunshape distributions for terrestrial solar simulations[J]. Solar energy, 2003, 74(2): 113-122.
[19] HUANG W D, HU P, CHEN Z S.Performance simulation of a parabolic trough solar collector[J]. Solar energy, 2012, 86(2): 746-755.
PDF(4184 KB)

Accesses

Citation

Detail

Sections
Recommended

/