RESEARCH ON BEARING CAPACITY OF WIND TURBINE TOWER CONSIDERING COLD BENDING AND WELDING IMPERFECTIONS

Chen Junling, Wan Zhaocong, Feng Youquan, Qiu Xu

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 39-46.

PDF(2288 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2288 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 39-46. DOI: 10.19912/j.0254-0096.tynxb.2024-0531

RESEARCH ON BEARING CAPACITY OF WIND TURBINE TOWER CONSIDERING COLD BENDING AND WELDING IMPERFECTIONS

  • Chen Junling1, Wan Zhaocong1, Feng Youquan2, Qiu Xu3
Author information +
History +

Abstract

The cold bending and welding imperfections in the finite element models are generated through setting the thermal expansion coefficient of steel and applying temperature field. The influence of length-radius ratio, radius-thickness ratio, spacing of circumferential welds, amplitude of welding depression and residual stresses on the bearing capacity of the tower are investigated. The numerical results show that the influence of cold bending and welding residual stresses on the load bearing capacity of the tower is non-negligible. When the welding depression is relatively large, the finite element results may be lower than the bearing capacity characteristic values calculated by the engineering algorithm given in Eurocode 3, which means that the engineering algorithm is not conservative.

Key words

wind turbines / towers / defects / buckling / bearing capacity

Cite this article

Download Citations
Chen Junling, Wan Zhaocong, Feng Youquan, Qiu Xu. RESEARCH ON BEARING CAPACITY OF WIND TURBINE TOWER CONSIDERING COLD BENDING AND WELDING IMPERFECTIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 39-46 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0531

References

[1] HUTCHINSON M, ZHAO F. Gobal wind report2023[R/OL]. Brussels: Global Wind Energy Council, 2023. https://gwec.net/globalwindreport2023/.
[2] CHOU J S, OU Y C, LIN K Y.Collapse mechanism and risk management of wind turbine tower in strong wind[J]. Journal of wind engineering and industrial aerodynamics, 2019, 193: 103962.
[3] 黄中华, 刘喆, 谢雅. 超大功率风力发电机组塔筒屈曲分析[J]. 太阳能学报, 2022, 43(4): 304-310.
HUANG Z H, LIU Z, XIE Y.Buckling analysis of large wind turbine towers[J]. Acta energiae solaris sinica, 2022, 43(4): 304-310.
[4] 杜静, 周云鹏, 郭智. 大型水平轴风力发电机组塔筒非线性屈曲分析[J]. 太阳能学报, 2016, 37(12): 3178-3183.
DU J, ZHOU Y P, GUO Z.Nonlinear buckling analysis of tower of large scale horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2016, 37(12): 3178-3183.
[5] CHEN X, XU J Z.Structural failure analysis of wind turbines impacted by super typhoon Usagi[J]. Engineering failure analysis, 2016, 60: 391-404.
[6] LUNCHICK M E.The influence of residual rolling stresses on the strength of cylindrical pressure vessels under external loading[J]. Journal of engineering for industry, 1970, 92(2): 275-280.
[7] ROMAN V G, ELWI A E.Analysis of large-diameter fabricated steel tubes under transverse shear[J]. Journal of engineering mechanics, 1989, 115(12): 2587-2600.
[8] ROTTER J M.Elastic plastic buckling and collapse in internally pressurised axially compressed silo cylinders with measured axisymmetric imperfections: interactions between imperfections, residual stresses and collapse[C]//Proceedings of the International Workshop on Imperfections in Metal Silos: Measurement, Characterisation and Strength Analysis. Lyon, France, 1996.
[9] HÜBNER A, TENG J G, SAAL H. Buckling behaviour of large steel cylinders with patterned welds[J]. International journal of pressure vessels and piping, 2006, 83(1): 13-26.
[10] XU Y Z, REN Q Q, ZHANG H, et al.Collapse analysis of a wind turbine tower with initial-imperfection subjected to near-field ground motions[J]. Structures, 2021, 29: 373-382.
[11] SADOWSKI A J, SEIDEL M, AL-LAWATI H, et al.8-MW wind turbine tower computational shell buckling benchmark. Part 1: an international ‘round-robin’ exercise[J]. Engineering failure analysis, 2023, 148: 107124.
[12] CEN. Eurocode 3: design of steel structures - part 1-6: strength and stability of shell structures: EN1993-1-6: 2007+A1: 2017[S].
[13] MISES R V.Mechanik der festen Körper im plastisch-deformablen Zustand[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913: 582-92.
[14] ABAQUS. SIMULIA user asistance 2018 ABAQUS[M]. Providence, RI, USA: Dassault Systèmes Simulia Corporation, 2018.
[15] VASILIKIS D, KARAMANOS S A, VAN ES S H J, et al. Bending deformation capacity of large-diameter spiral-welded tubes[C]//2014 10th international pipeline conference. Calgary, Alberta, Canada, 2014.
[16] ROTTER J M, TENG J-G.Elastic stability of cylindrical shells with weld depressions[J]. Journal of structural engineering, 1989, 115(5): 1244-1263.
[17] BERRY P A, ROTTER J M, BRIDGE R Q.Compression tests on cylinders with circumferential weld depressions[J]. Journal of engineering mechanics, 2000, 126(4): 405-413.
[18] TENG J G, SONG C Y.Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections[J]. International journal of solids and structures, 2001, 38(18): 3263-3280.
[19] SADOWSKI A J, FAJUYITAN O K, WANG J.A computational strategy to establish algebraic parameters for the Reference Resistance Design of metal shell structures[J]. Advances in engineering software, 2017, 109: 15-30.
[20] ROTTER J M.The new framework for shell buckling design and the European shell buckling recommendations fifth edition[J]. Journal of pressure vessel technology, 2011, 133(1): 011203.
[21] ROTTER J M.The new method of reference resistance design for shell structures[C]//Proceedings of the International Colloquium on Stability and Ductility of Steel Structures . Timisoara, Romania, 2016.
PDF(2288 KB)

Accesses

Citation

Detail

Sections
Recommended

/