PERFORMANCE OPTIMIZATION AND ENERGY-SAVING POTENTIAL STUDY OF MODULAR THERMO-ACTIVATED WALL

Chen Sarula, Chen Kunyu, Yang Yang, Chen Tianhang, Xu Jieqing, Bao Xuefang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 514-523.

PDF(5463 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5463 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 514-523. DOI: 10.19912/j.0254-0096.tynxb.2024-0539

PERFORMANCE OPTIMIZATION AND ENERGY-SAVING POTENTIAL STUDY OF MODULAR THERMO-ACTIVATED WALL

  • Chen Sarula1, Chen Kunyu1, Yang Yang2, Chen Tianhang1, Xu Jieqing1, Bao Xuefang1
Author information +
History +

Abstract

To address the mismatch between the heat injection rate and heat diffusion rate in conventional thermo-activated walls(CTAW) during heat injection, a modular thermo-activated wall (MTAW) with specific internal channels is proposed. The effects of filler cavity size (ab) and thermal conductivity of the filler (λf) on dynamic thermal behavior, energy consumption, and thermal comfort are investigated based on a validated numerical model. Results indicate that the dynamic thermal behavior of MTAW can be significantly enhanced, with improvement correlating positively with increases in the a∶b and λf. Besides, the enhanced heat injection design can ensure effective radial heat transfer from the pipes to the far boundary, resulting in better continuity and stability of the invisible thermal barrier compared to CTAW. Moreover, increasing a∶b and λf can positively impact radiant thermal comfort and energy savings. Compared to CTAW, the energy-saving efficiency of MTAW can be enhanced by up 42.3%. The improvement effect becomes more obvious as the spacing of the embedded tubes decreases.

Key words

solar energy / numerical simulation / energy saving / active insulation / efficient utilization of low-grade energy

Cite this article

Download Citations
Chen Sarula, Chen Kunyu, Yang Yang, Chen Tianhang, Xu Jieqing, Bao Xuefang. PERFORMANCE OPTIMIZATION AND ENERGY-SAVING POTENTIAL STUDY OF MODULAR THERMO-ACTIVATED WALL[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 514-523 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0539

References

[1] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[2] 张志刚, 苏珂, 姚万祥. 热管置入式墙体在实际建筑中的传热特性研究[J]. 太阳能学报, 2022, 43(10): 1-6.
ZHANG Z G, SU K, YAO W X.Study on heat transfer characteristics of wall implanted with heat pipes in actual buildings[J]. Acta energiae solaris sinica, 2022, 43(10): 1-6.
[3] 余才锐, 沈冬梅, 何伟, 等. 基于辐射制冷和微槽道热管的相变墙体实验研究[J]. 太阳能学报, 2020, 41(4): 123-128.
YU C R, SHEN D M, HE W, et al.Experimental research on phase change wall based on sky radiative cooling and micro-channel heat pipe[J]. Acta energiae solaris sinica, 2020, 41(4): 123-128.
[4] 胡中停, 余鹏坤, 陈明想, 等. 基于微通道板强化换热的多功能百叶集热墙模块实验研究[J]. 太阳能学报, 2022, 43(2): 246-249.
HU Z T, YU P K, CHEN M X, et al.Experiment analysis of multi-functional Trombe wall modul based on enhanced heat transfer micro-channel plate[J]. Acta energiae solaris sinica, 2022, 43(2): 246-249.
[5] LEHMANN B, DORER V, KOSCHENZ M.Application range of thermally activated building systems tabs[J]. Energy and buildings, 2007, 39(5): 593-598.
[6] CUI H X, OVEREND M.A review of heat transfer characteristics of switchable insulation technologies for thermally adaptive building envelopes[J]. Energy and buildings, 2019, 199: 427-444.
[7] 杨洋, 陈萨如拉. 嵌管式热激活复合墙体综合能量特性全局敏感性研究[J]. 太阳能学报, 2023, 44(7): 248-256.
YANG Y, CHEN S R L. Global sensitivity analysis on thermal performances of pipe-embedded thermo-activated composite wall[J]. Acta energiae solaris sinica, 2023, 44(7): 248-256.
[8] JIANG S H, LI X T, LYU W H, et al.Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline[J]. Journal of building engineering, 2020, 31: 101435.
[9] GUO H A.Optimize the location of embedded pipes by using low-grade natural thermal energy/waste heat for thermal activated façade[J]. International journal of mechanical engineering and applications, 2023, 11(1): 9-25.
[10] ZHAO Y X, ZHA F H, LI X T.A simplified method for the thermal performance analysis of double-layer pipe-embedded external wall[J]. Journal of building engineering, 2023, 80: 108155.
[11] CHEN S, CHANG T X, YANG Y.Summer thermal and energy performances assessment of a modular hydronic thermal barrier wall for ultra-low energy buildings-a field experimental study[J]. Applied thermal engineering, 2024, 236: 121491.
[12] SHEN C, LI X T.Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season[J]. Energy and buildings, 2017, 138: 318-331.
[13] ZHU L, YANG Y, CHEN S, et al.Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials[J]. Applied thermal engineering, 2018, 138: 35-47.
[14] FOROUZANDEH A.Comparative analysis of Sol-air temperature in typical open and semi-closed courtyard spaces[J]. Building simulation, 2022, 15(6): 957-973.
[15] O’CALLAGHAN P W, PROBERT S D. Sol-air temperature[J]. Applied energy, 1977, 3(4): 307-311.
[16] GB 50176—2016, 民用建筑热工设计规范[S].
GB 50176—2016, Code for thermal design of civil building[S].
[17] 中国气象局气象信息中心气象资料室.中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社,2005.
China Meteorological Administration Meteorological Information Center, Climatological Data Room. China Meteorological Data Set for Building Thermal Environment Analysis[M]. Beijing: China Architecture & Building Press, 2005.
[18] ŠIMKO M, KRAJČÍK M, ŠIKULA O, et al. Insulation panels for active control of heat transfer in walls operated as space heating or as a thermal barrier: numerical simulations and experiments[J]. Energy and buildings, 2018, 158: 135-146.
[19] CHEN S, YANG Y, OLOMI C, et al.Numerical study on the winter thermal performance and energy saving potential of thermo-activated PCM composite wall in existing buildings[J]. Building simulation, 2020, 13(2): 237-256.
PDF(5463 KB)

Accesses

Citation

Detail

Sections
Recommended

/