EFFECTS OF TiO2 NANOPARTICLE CLUSTERS ON RADIATION CHARACTERISTICS OF NANOFLUIDS

Feng Jie, Liu Bo, Shi Guohua, Wang Ziang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 524-530.

PDF(1807 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1807 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 524-530. DOI: 10.19912/j.0254-0096.tynxb.2024-0569

EFFECTS OF TiO2 NANOPARTICLE CLUSTERS ON RADIATION CHARACTERISTICS OF NANOFLUIDS

  • Feng Jie, Liu Bo, Shi Guohua, Wang Ziang
Author information +
History +

Abstract

Nanofluids are widely used in solar photothermal conversion systems to improve the efficiency of the system. The radiation characteristics of nanoparticles are the key to influence solar energy absorption. In this paper, the effects of TiO2 nanoparticle clusters on the radiation properties of nanofluids were studied. The scattering and absorption factors of individual nanoparticles and clusters were calculated by FDTD method, and the relevant radiation characteristic parameters of nanofluids were calculated according to the independent scattering theory. The multispectral radiation properties of single-cluster and multi-cluster nanofluids are discussed. It is found that the absorption coefficient of single clusters is much higher than that of single nanoparticles without clusters when the incident wavelength is 0.40-1.00 μm. For water-based nanofluids, the clusters of nanoparticles have a great influence on the radiation properties of the nanofluids. When the incident wavelength is 0.30-0.40 μm, it is found that the different proportion of clusters have little effect on the absorption coefficient of the multi-cluster nanofluids. In addition, it is found that the albedo of the nanofluid and the number of nanoparticles contained in a single cluster changes inversely at short and long incident wavelengths.

Key words

solar energy / nanoparticles / thermal radiation / optical properties / cluster / TiO2

Cite this article

Download Citations
Feng Jie, Liu Bo, Shi Guohua, Wang Ziang. EFFECTS OF TiO2 NANOPARTICLE CLUSTERS ON RADIATION CHARACTERISTICS OF NANOFLUIDS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 524-530 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0569

References

[1] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta energiae solaris sinica, 2024, 45(1): 500-514.
[2] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[3] 宣益民. 纳米流体能量传递理论与应用[J]. 中国科学(技术科学), 2014, 44(3): 269-279.
XUAN Y M.An overview on nanofluids and applications[J]. Scientia sinica (technologica), 2014, 44(3): 269-279.
[4] KUMAR P G, VIGNESWARAN S, MEIKANDAN M, et al.Exploring the photo-thermal conversion behavior and extinction coefficient of activated carbon nanofluids for direct absorption solar collector applications[J]. Environmental science and pollution research international, 2022, 29(9): 13188-13200.
[5] MENBARI A, ALEMRAJABI A A, REZAEI A.Heat transfer analysis and the effect of CuO/water nanofluid on direct absorption concentrating solar collector[J]. Applied thermal engineering, 2016, 104: 176-183.
[6] LEE S L, SAIDUR R, SABRI M F M, et al. Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation[J]. Numerical heat transfer part A - applications, 2016, 69(9): 996-1013.
[7] DU M, TANG G H.Optical property of nanofluids with particle agglomeration[J]. Solar energy, 2015, 122: 864-872.
[8] 凌智勇, 黄跃涛, 张忠强, 等. 表面活性剂对Cu-H2O和ZrO2-H2O纳米流体稳定性的影响[J]. 功能材料, 2015, 46(10): 10100-10103, 10109.
LING Z Y, HUANG Y T, ZHANG Z Q, et al.Effect of surfactants on the stability of Cu-H2O and ZrO2-H2O nanofluids[J]. Journal of functional materials, 2015, 46(10): 10100-10103, 10109.
[9] 徐小娇, 刘妮, 王玉强, 等. 纳米流体悬浮液稳定性的最新研究进展[J]. 流体机械, 2012, 40(10): 46-49, 45.
XU X J, LIU N, WANG Y Q, et al.Review of latest developments on stability of nanofluids[J]. Fluid machinery, 2012, 40(10): 46-49, 45.
[10] CAI J C, HU X Y, XIAO B Q, et al.Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation[J]. International journal of heat and mass transfer, 2017, 105: 623-637.
[11] CHEN J, ZHAO C Y, WANG B X.Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: an experimental and theoretical study[J]. International journal of heat and mass transfer, 2020, 154: 119690.
[12] JIANG W T, DING G L, PENG H, et al.Modeling of nanoparticles’ aggregation and sedimentation in nanofluid[J]. Current applied physics, 2010, 10(3): 934-941.
[13] YEE K E.Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE transactions on antennas and propagation, 1966, 14(3): 302-307.
[14] MA L X, TAN J Y, ZHAO J M, et al.Dependent scattering and absorption by densely packed discrete spherical particles: effects of complex refractive index[J]. Journal of quantitative spectroscopy and radiative transfer, 2017, 196: 94-102.
[15] HALE G M, QUERRY M R.Optical constants of water in the 200-nm to 200- 744 micrometer wavelength region[J]. Applied optics, 1973, 12: 555-563.
[16] PANG C W, LEE J W, KANG Y T.Review on combined heat and mass transfer characteristics in nanofluids[J]. International journal of thermal sciences, 2015, 87: 49-67.
PDF(1807 KB)

Accesses

Citation

Detail

Sections
Recommended

/