RESEARCH ON DEFECT DETECTION OF SOLAR CELLS WITH YOLOv8 ALGORITHM

Wang Zongliang, Lu Li, Kang Xiaodong, Ruan Xiaopeng, Da Xianwen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 379-386.

PDF(3436 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3436 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 379-386. DOI: 10.19912/j.0254-0096.tynxb.2024-0572

RESEARCH ON DEFECT DETECTION OF SOLAR CELLS WITH YOLOv8 ALGORITHM

  • Wang Zongliang, Lu Li, Kang Xiaodong, Ruan Xiaopeng, Da Xianwen
Author information +
History +

Abstract

Aiming at the problems of defect scale inconsistency and serious interference of background noise in the defect detection process of solar cells under electroluminescence conditions, a defect detection algorithm based on YOLOv8 is proposed to accurately identify the defects on the surface of the cells. Firstly, the sensing field attention convolution is used to make the model dynamically adjust the sensing field weights, reduce the blurring and omission of image information, and improve the detection effect of tiny defects. Secondly, the coordinate attention mechanism is introduced to obtain the aspect direction information, highlight the key features, and alleviate the interference of the background noise; finally, the SIoU is used as the bounding box loss function, and the vector angle is incorporated into the consideration criterion in the process of predicting the convergence of the box. The experimental results show that the algorithm achieves a mAP of 92.83% on the solar cell defect detection dataset, which is an improvement of 2.1% compared with the original network, and the cases of misdetection and omission are significantly reduced, which is able to effectively locate and identify the defects on solar cells.

Key words

deep learning / solar cells / electroluminescence / convolutional neural networks / object detection

Cite this article

Download Citations
Wang Zongliang, Lu Li, Kang Xiaodong, Ruan Xiaopeng, Da Xianwen. RESEARCH ON DEFECT DETECTION OF SOLAR CELLS WITH YOLOv8 ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 379-386 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0572

References

[1] 曹邵文, 周国庆, 蔡琦琳, 等. 太阳能电池综述: 材料、政策驱动机制及应用前景[J]. 复合材料学报, 2022, 39(5): 1847-1858.
CAO S W, ZHOU G Q, CAI Q L, et al.A review of solar cells: materials, policy-driven mechanisms and application prospects[J]. Acta materiae compositae sinica, 2022, 39(5): 1847-1858.
[2] 梁振群, 李垚垚, 孟宁, 等. 大面积钙钛矿太阳能电池制备方法综述[J]. 微纳电子与智能制造, 2023, 5(3): 53-62.
LIANG Z Q, LI Y Y, MENG N, et al.A review on the fabrication techniques of large-area perovskite solar cells[J]. Micro/nano electronics and intelligent manufacturing, 2023, 5(3): 53-62.
[3] 王银, 高瑞泽, 李茂环, 等. 基于YOLOv5 LiteX算法的光伏组件缺陷检测[J]. 太阳能学报, 2023, 44(9): 101-108.
WANG Y, GAO R Z, LI M H, et al.Photovoltaic modules defect detection based on YOLOv5 LiteX algorithm[J]. Acta energiae solaris sinica, 2023, 44(9): 101-108.
[4] DHIMISH M, HOLMES V, MEHRDADI B, et al.The impact of cracks on photovoltaic power performance[J]. Journal of science: advanced materials and devices, 2017, 2(2): 199-209.
[5] 高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470.
GAO W, HUANG J M.Intelligent fault diagnosis method of photovoltaic module via SSELM[J]. Acta energiae solaris sinica, 2021, 42(12): 465-470.
[6] 吴琼, 解玉文, 郎庆凯, 等. 光伏组件智能化故障检测综述[J]. 上海电力大学学报, 2023, 39(3): 252-257.
WU Q, XIE Y W, LANG Q K, et al.Review of intelligent fault detection of photovoltaic modules[J]. Journal of Shanghai University of Electric Power, 2023, 39(3): 252-257.
[7] 周颖, 王如意, 袁梓桐, 等. 一种高效双路径注意力太阳电池缺陷检测网络[J]. 太阳能学报, 2023, 44(4): 407-413.
ZHOU Y, WANG R Y, YUAN Z T, et al.An efficient dual-path attention solar cell defect detection network[J]. Acta energiae solaris sinica, 2023, 44(4): 407-413.
[8] 赵晓雨, 高林, 杨校李, 等. 融合注意力机制的YOLOv5光伏板电致发光图像缺陷检测算法[J]. 湖北民族大学学报(自然科学版), 2023, 41(1): 65-70.
ZHAO X Y, GAO L, YANG X L, et al.Algorithm of YOLOv5 fusing attention mechanism for defect detection of photovoltaic panel electroluminescent image[J]. Journal of Hubei Minzu University (natural science edition), 2023, 41(1): 65-70.
[9] ÖZER T, TÜRKMEN Ö. Low-cost AI-based solar panel detection drone design and implementation for solar power systems[J]. Robotic intelligence and automation, 2023, 43(6): 605-624.
[10] AHMED AL-DULAIMI A, TAHIR GUNESER M, ALI HAMEED A, et al. Automated classification of snow-covered solar panel surfaces based on deep learning approaches[J]. Computer modeling in engineering & sciences, 2023, 136(3): 2291-2319.
[11] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学精密工程, 2023, 31(12): 1804-1815.
CHEN Y F, LIAO F, HUANY X Y, et al.Multi-scale YOLOv5 for solar cell defect detection[J]. Optics and precision engineering, 2023, 31(12): 1804-1815.
[12] YU G Y, SU J P, LUO Y T, et al.Efficient detection method of deep-sea netting breakage based on attention and focusing on receptive-field spatial feature[J]. Signal, image and video processing, 2024, 18(2): 1205-1214.
[13] ZHANG F, WANG G C.Multi-branch selection fusion fine-grained classification algorithm based on coordinate attention localization[C]//2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), Macao, China, 2022: 105-111.
[14] MA Y H, YUAN G W, YUE K, et al.CJS-YOLOv5n: a high-performance detection model for cigarette appearance defects[J]. Mathematical biosciences and engineering, 2023, 20(10): 17886-17904.
[15] TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO-GONZÁLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine learning and knowledge extraction, 2023, 5(4): 1680-1716.
[16] SU B Y, ZHOU Z, CHEN H Y.PVEL-AD: a large-scale open-world dataset for photovoltaic cell anomaly detection[J]. IEEE transactions on industrial informatics, 2023, 19(1): 404-413.
[17] BOLYA D, FOLEY S, HAYS J, et al.TIDE: a general toolbox for identifying object detection errors[C]//Computer Vision-ECCV 2020, Cham: Springer International Publishing, 2020: 558-573.
PDF(3436 KB)

Accesses

Citation

Detail

Sections
Recommended

/