FUEL CELL LIFE ESTIMATION BASED ON INFORMER ALGORITHM

Shi Yong, Zhao Hongxiao, Xie Di, Wang Liangliang, Su Jianhui, Xie Bao

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 240-248.

PDF(4506 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4506 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 240-248. DOI: 10.19912/j.0254-0096.tynxb.2024-0592

FUEL CELL LIFE ESTIMATION BASED ON INFORMER ALGORITHM

  • Shi Yong1, Zhao Hongxiao1, Xie Di2, Wang Liangliang2, Su Jianhui1, Xie Bao1
Author information +
History +

Abstract

In the present, common methods for estimating fuel cell life include long short-term memory (LSTM) and gated recurrent unit (GRU) neural networks. However, these methods have drawbacks in capturing long-term dependencies and ensuring accuracy. To address these issues, a fuel cell life estimation approach based on the Informer algorithm is proposed, aiming to enhance both accuracy and efficiency. Data smoothing techniques such as the weighted average method and the Pearson coefficient method are employed to reduce noise and improve data trend. By leveraging the multi-scale information fusion and long-term dependency modeling capabilities of the Informer model, a life estimation framework is crafted to enable online fuel cell life estimation. Subsequently, three sets of experiments are conducted to compare with traditional LSTM and GRU models. When the training set constitutes 80%, the Informer model exhibits the smallest mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE), indicating higher estimation accuracy compared to LSTM and GRU models. These findings demonstrate the outstanding performance of the Informer model in long-term series estimation, thereby establishing a dependable foundation for fuel cell life estimation.

Key words

neural networks / fuel cells / parallel processing / life estimation / ProbSparse self-attention mechanism

Cite this article

Download Citations
Shi Yong, Zhao Hongxiao, Xie Di, Wang Liangliang, Su Jianhui, Xie Bao. FUEL CELL LIFE ESTIMATION BASED ON INFORMER ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 240-248 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0592

References

[1] 陈家城, 周苏. 大功率质子交换膜燃料电池建模及仿真[J]. 太阳能学报, 2024, 45(3): 290-297.
CHEN J C, ZHOU S.Modeling and simulation of high-power proton exchange membrane fuel cells[J]. Acta energiae solaris sinica, 2024, 45(3): 290-297.
[2] 刘阳, 陈奔. 车用PEMFC氢气系统建模及其排放特性研究[J]. 太阳能学报, 2023, 44(2): 260-268.
LIU Y, CHEN B.Modeling and emission characteristics study of pemfc hydrogen system for vehicles[J]. Acta energiae solaris sinica, 2023, 44(2): 260-268.
[3] JOUIN M, GOURIVEAU R, HISSEL D, et al.Prognostics and health management of PEMFC-state of the art and remaining challenges[J]. International journal of hydrogen energy, 2013, 38(35): 15307-15317.
[4] 马睿, 党翰斌, 张钰奇, 等. 质子交换膜燃料电池系统故障机理分析及诊断方法研究综述[J]. 中国电机工程学报, 2024, 44(1): 407-427.
MA R, DANG H B, ZHANG Y Q, et al.A review on failure mechanism analysis and diagnosis for proton exchange membrane fuel cell systems[J]. Proceedings of the CSEE, 2024, 44(1): 407-427.
[5] ZHU L, CHEN J.Prognostics of PEM fuel cells based on Gaussian process state space models[J]. Energy, 2018, 149: 63-73.
[6] WANG Y P, WANG K, WANG B W, et al.A data-driven approach to lifespan prediction for vehicle fuel cell systems[J]. IEEE transactions on transportation electrification, 2023, 9(4): 5049-5060.
[7] CHEN K, LAGHROUCHE S, DJERDIR A.Proton exchange membrane fuel cell degradation and remaining useful life prediction based on artificial neural network[C]//2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). Paris, France, 2018: 407-411.
[8] CHENG Y J, ZERHOUNI N, LU C.A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2018, 43(27): 12314-12327.
[9] 薛阳, 燕宇铖, 贾巍, 等. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报, 2023, 44(7): 207-213.
XUE Y, YAN Y C, JIA W, et al.Photovoltaic power prediction model based on IGWO-LSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 207-213.
[10] LIU J W, LI Q, CHEN W R, et al.Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International journal of hydrogen energy, 2019, 44(11): 5470-5480.
[11] 莫易敏, 余自豪, 叶鹏, 等. 基于迁移学习与GRU神经网络结合的锂电池SOH估计[J]. 太阳能学报, 2024, 45(3): 233-239.
MO Y M, YU Z H, YE P, et al.Lithium battery SOH estimation method based on combination of transfer learning and GRU neural network[J]. Acta energiae solaris sinica, 2024, 45(3): 233-239.
[12] BENGIO Y, SIMARD P, FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
[13] 何滢婕, 刘月峰, 边浩东, 等. 基于Informer的电池荷电状态估算及其稀疏优化方法[J]. 电子学报, 2023, 51(1): 50-56.
HE Y J, LIU Y F, BIAN H D, et al.State-of-charge estimation of lithium-ion battery based on Informer and its sparse optimization method[J]. Acta electronica sinica, 2023, 51(1): 50-56.
[14] LI Y Y, LIU Y C, WILLIAMSON D S.On loss functions for deep-learning based T60 estimation[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, ON, Canada, 2021: 486-490.
PDF(4506 KB)

Accesses

Citation

Detail

Sections
Recommended

/