LIGHTWEIGHT DESIGN OF FRONT NACELLE BASE FOR WIND TURBINE BASED ON TOPOLOGY OPTIMIZATION

Wang Hui, Shu Jiaojiao, Ni Min, Zhao Chunyu, Liu Shengju, Long Kai

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 11-16.

PDF(1992 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1992 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 11-16. DOI: 10.19912/j.0254-0096.tynxb.2024-0626

LIGHTWEIGHT DESIGN OF FRONT NACELLE BASE FOR WIND TURBINE BASED ON TOPOLOGY OPTIMIZATION

  • Wang Hui, Shu Jiaojiao, Ni Min, Zhao Chunyu, Liu Shengju, Long Kai
Author information +
History +

Abstract

To achieve the lightweight design of the front nacelle base for wind turbines, a structural design process driven by topology optimization and shape optimization is proposed. Within the scope of topology optimization, a comparative analysis was conducted to assess the differences and similarities in the results obtained under various conditions, including compliance-weighted optimization for multiple load cases, minimization of the maximum compliance, and topology optimization under the influence of a single bending moment. This examination aimed to elucidate the strengths and weaknesses of each type of topology optimization model, and to identify their respective applicability ranges. Inspired by topology optimization, the geometric model is reconstructed, and shape optimization is employed to address localized strength deficiencies, reinforcing the structure through optimized design. The ultimate optimized structure achieves an 8.85% weight reduction by optimizing the available space (eliminating the base plate and bearing seat), while fully meeting the strength design requirements. These results validate the feasibility of the proposed topology optimization method in the conceptual design of the front nacelle base.

Key words

wind turbines / structural design / topology optimization / front nacelle base / strength assessment

Cite this article

Download Citations
Wang Hui, Shu Jiaojiao, Ni Min, Zhao Chunyu, Liu Shengju, Long Kai. LIGHTWEIGHT DESIGN OF FRONT NACELLE BASE FOR WIND TURBINE BASED ON TOPOLOGY OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 11-16 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0626

References

[1] SIGMUND O, MAUTE K.Topology optimization approaches[J]. Structural and multidisciplinary optimization, 2013, 48(6): 1031-1055.
[2] SIGMUND O.EML webinar overview: topology optimization: status and perspectives[J]. Extreme mechanics letters, 2020, 39: 100855.
[3] LONG K, SAEED A, ZHANG J H, et al.An overview of sequential approximation in topology optimization of continuum structure[J]. Computer modeling in engineering & sciences, 2024, 139(1): 43-67.
[4] AAGE N, ANDREASSEN E, LAZAROV B S, et al.Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674): 84-86.
[5] WU Y F, QIU W K, XIA L, et al.Design of an aircraft engine bracket using stress-constrained bi-directional evolutionary structural optimization method[J]. Structural and multidisciplinary optimization, 2021, 64(6): 4147-4159.
[6] ZHU J H, ZHANG W H, XIA L.Topology optimization in aircraft and aerospace structures design[J]. Archives of computational methods in engineering, 2016, 23(4): 595-622.
[7] MENG L, ZHANG W H, QUAN D L, et al.From topology optimization design to additive manufacturing: today's success and tomorrow's roadmap[J]. Archives of computational methods in engineering, 2020, 27(3): 805-830.
[8] BEGHINI L L, BEGHINI A, KATZ N, et al.Connecting architecture and engineering through structural topology optimization[J]. Engineering structures, 2014, 59: 716-726.
[9] ZHANG L T, GUO L F, SUN P W, et al.A generalized discrete fiber angle optimization method for composite structures: bipartite interpolation optimization[J]. International journal for numerical methods in engineering, 2023, 124(5): 1211-1229.
[10] WANG X, MENG Z, YANG B, et al.Reliability-based design optimization of material orientation and structural topology of fiber-reinforced composite structures under load uncertainty[J]. Composite structures, 2022, 291: 115537.
[11] 李宏宇, 孙鹏文, 张兰挺, 等. 基于ICM的风力机叶片多相材料拓扑优化设计[J]. 太阳能学报, 2021, 42(12): 261-266.
LI H Y, SUN P W, ZHANG L T, et al.Topology optimization design for multiphase materials of wind turbine blade based on ICM[J]. Acta energiae solaris sinica, 2021, 42(12): 261-266.
[12] LEE Y S, GONZÁLEZ J A, LEE J H, et al. Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[13] WANG Z J, SUIKER A S J, HOFMEYER H, et al. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades[J]. Energy conversion and management, 2020, 212: 112621.
[14] CHEN Z, LONG K, ZHANG C W, et al.A fatigue-resistance topology optimization formulation for continua subject to general loads using rainflow counting[J]. Structural and multidisciplinary optimization, 2023, 66(9): 210.
[15] 陆飞宇, 张承婉, 龙凯, 等. 风电机组主轴承座抗疲劳拓扑优化设计方法[J]. 太阳能学报, 2023, 44(8): 518-523.
LU F Y, ZHANG C W, LONG K, et al.Fatigue-resistance topology optimization method for main bearing seat of wind turbines[J]. Acta energiae solaris sinica, 2023, 44(8): 518-523.
[16] 龙凯, 陈卓, 张锦华, 等. 连续体结构拓扑优化方法及在风电机组零部件轻量化设计中的应用[M]. 北京: 中国水利水电出版社, 2023.
LONG K, CHEN Z, ZHANG J H, et al.Topology optimization method of continuum structure and its application in lightweight design of wind turbine parts[M]. Beijing: China Water & Power Press, 2023.
[17] 陆飞宇, 龙凯, 张承婉, 等. 基于拓扑优化的海上风电机组三脚架结构设计[J]. 太阳能学报, 2023, 44(7): 339-344.
LU F Y, LONG K, ZHANG C W, et al.Structural design on tripod structure of offshore wind turbine based on topology optimization method[J]. Acta energiae solaris sinica, 2023, 44(7): 339-344.
[18] 张承婉, 张锦华, 龙凯, 等. 海上风电机组多导管架拓扑优化方法[J]. 太阳能学报, 2023, 44(6): 495-500.
ZHANG C W, ZHANG J H, LONG K, et al.Topology optimization methodology on multi-jacket structure for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(6): 495-500.
[19] TIAN X J, WANG Q Y, LIU G J, et al.Topology optimization design for offshore platform jacket structure[J]. Applied ocean research, 2019, 84: 38-50.
[20] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2022, 243: 110084.
[21] ZHANG C W, LONG K, ZHANG J H, et al.A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase[J]. Ocean engineering, 2022, 266: 112974.
[22] LU F Y, LONG K, ZHANG C W, et al.A novel design of the offshore wind turbine tripod structure using topology optimization methodology[J]. Ocean engineering, 2023, 280: 114607.
[23] LU F Y, LONG K, DIAELDIN Y, et al.A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines[J]. Sustainable energy technologies and assessments, 2023, 60: 103450.
[24] YU Y, WEI M X, YU J X, et al.Reliability-based design method for marine structures combining topology, shape, and size optimization[J]. Ocean engineering, 2023, 286: 115490.
[25] MARJAN A, HUANG L F.Topology optimisation of offshore wind turbine jacket foundation for fatigue life and mass reduction[J]. Ocean engineering, 2023, 289: 116228.
[26] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23(2): 97-110.
[27] DS/EN 61400-3:2009,wind turbines-part 3: design requirements for offshore wind turbines[S].
[28] ZHOU M, SHYY, THOMAS H L. Checkerboard and minimum member size control in topology optimization[J]. Structural and multidisciplinary optimization, 2001, 21(2): 152-158.
[29] 于新, 隋允康. 平面连续体多工况应力约束下结构拓扑优化的有无复合体方法[J]. 计算力学学报, 2001, 18(2): 200-204.
YU X, SUI Y K.Exist-null combination method for the topological optimization of plane continuum structure under multi-loading case with stress constraint[J]. Chinese journal of computational mechanics, 2001, 18(2): 200-204.
[30] 邹文胜, 左正兴, 廖日东, 等. 基于生物进化理论的结构优化设计研究[J]. 兵工学报, 2001, 22(3): 429-432.
ZOU W S, ZUO Z X, LIAO R D, et al.Structural optimization based on biological evolution[J]. Acta armamentarii, 2001, 22(3): 429-432.
[31] DNVGL-ST-0361, machinery for wind turbines[S].
PDF(1992 KB)

Accesses

Citation

Detail

Sections
Recommended

/