SUB-ITEM EFFICIENCY RESEARCH ON LAYOUT METHODS OF DIFFERENT HELIOSTAT FIELD FOR SOLAR THERMAL POWER TOWER STATIONS

Zhou Zhi, Zhang Siyuan, Yang Genben, Gao Zhenxin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 531-536.

PDF(6875 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6875 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (8) : 531-536. DOI: 10.19912/j.0254-0096.tynxb.2024-0631

SUB-ITEM EFFICIENCY RESEARCH ON LAYOUT METHODS OF DIFFERENT HELIOSTAT FIELD FOR SOLAR THERMAL POWER TOWER STATIONS

  • Zhou Zhi, Zhang Siyuan, Yang Genben, Gao Zhenxin
Author information +
History +

Abstract

This study used self-developed heliostat field efficiency analysis software to calculate and compare the annual cosine efficiency, shadowing and blocking efficiency, atmospheric attenuation efficiency, interception efficiency, and comprehensive efficiency of 4 types of heliostat fields: radial cornfield, radial staggered, Campo-type, and bio-mimetic type. The calculation results show that when the number and size of heliostats, tower height, and available area of heliostat field are basically equal, the shadowing and blocking loss of radial staggered layout is the smallest, and it has a significant advantage in the remote heliostat field; The annual cosine efficiency of the radial cornfield heliostat field is the highest, and it has a significant advantage in the near field heliostat field; The bio-mimetic heliostat fields have certain advantages in the mid-range due to their tendency to form higher densities; The Campo-type heliostat field has no significant advantages in all aspects.

Key words

solar power tower generation / heliostat field / optical efficiency / ray tracing / sun position / dynamic simulation

Cite this article

Download Citations
Zhou Zhi, Zhang Siyuan, Yang Genben, Gao Zhenxin. SUB-ITEM EFFICIENCY RESEARCH ON LAYOUT METHODS OF DIFFERENT HELIOSTAT FIELD FOR SOLAR THERMAL POWER TOWER STATIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 531-536 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0631

References

[1] 李美成, 高中亮, 王龙泽, 等. “双碳” 目标下我国太阳能利用技术的发展现状与展望[J]. 太阳能, 2021(11): 13-18.
LI M C, GAO Z L, WANG L Z, et al.Development status and prospect of solar energy utilization technology in China under goal of emission peak and carbon neutrality[J]. Solar energy, 2021(11): 13-18.
[2] 汪硕承, 谢开贵, 胡博, 等. 含光热电站的多能源系统混合储能容量优化配置[J]. 分布式能源, 2019, 4(5): 58-66.
WANG S C, XIE K G, HU B, et al.Optimal configuration of hybrid energy storage capacity in multi-energy system with CSP integration[J]. Distributed energy, 2019, 4(5): 58-66.
[3] 顾煜炯, 耿直, 张晨, 等. 聚光太阳能热发电系统关键技术研究综述[J]. 热力发电, 2017, 46(6): 6-13.
GU Y J, GENG Z, ZHANG C, et al.Review on key technologies of concentrating solar thermal power generation systems[J]. Thermal power generation, 2017, 46(6): 6-13.
[4] 王志峰. 太阳能热发电站设计[M]. 北京: 化学工业出版社, 2014.
WANG Z F.Design of solar thermal power station[M]. Beijing: Chemical Industry Press, 2014.
[5] RIZVI A A, DANISH S N, EL-LEATHY A, et al.A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems[J]. Solar energy, 2021, 218: 296-311.
[6] GRENA R.An algorithm for the computation of the solar position[J]. Solar energy, 2008, 82(5): 462-470.
[7] 房淼森, 逯静, 姜奕雯. 定日镜能量传输效率建模及镜场排布设计[J]. 太阳能学报, 2021, 42(1): 112-116.
FANG M S, LU J, JIANG Y W.Heliostat energy efficincy modeling and field layout design[J]. Acta energiae solaris sinica, 2021, 42(1): 112-116.
[8] GHIRARDI E, BRUMANA G, FRANCHINI G, et al.Heliostat layout optimization for load-following solar tower plants[J]. Renewable energy, 2021, 168: 393-405.
[9] 高博, 孙浩, 刘盛. 基于改进鲸鱼算法的太阳能热发电站镜场优化布置[J]. 太阳能学报, 2023, 44(10): 209-217.
GAO B, SUN H, LIU S.Heliostat field layout optimization of solar tower power station based on improved whale algorithm[J]. Acta energiae solaris sinica, 2023, 44(10): 209-217.
[10] 程小龙, 尹延国, 马少波. 塔式电站定日镜场布局的优化设计研究[J]. 能源与环境, 2018(2): 64-66, 70.
CHENG X L, YIN Y G, MA S B.Study on optimal design of heliostat field layout in tower power station[J]. Energy and environment, 2018(2): 64-66, 70.
[11] COLLADO F J.One-point fitting of the flux density produced by a heliostat[J]. Solar energy, 2010, 84(4): 673-684.
[12] HE C T, ZHAO Y H, FENG J Q.An improved flux density distribution model for a flat heliostat (iHFLCAL) compared with HFLCAL[J]. Energy, 2019, 189: 116239.
[13] 程小龙. 基于光学效率的塔式电站镜场布局优化设计研究[D]. 合肥: 合肥工业大学, 2018.
CHENG X L.Research on optimal design of mirror field layout of tower power station based on optical efficiency[D]. Hefei: Hefei University of Technology, 2018.
[14] BERENGUEL M, RUBIO F R, VALVERDE A, et al.An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant[J]. Solar energy, 2004, 76(5): 563-575.
[15] 高博, 刘建兴, 孙浩, 等. 基于自适应引力搜索算法的定日镜场优化布置[J]. 太阳能学报, 2022, 43(10): 119-125.
GAO B, LIU J X, SUN H, et al.Optimization of a heliostat field layout using adaptive gravity search algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 119-125.
[16] COLLADO F J, GUALLAR J.Campo: Generation of regular heliostat fields[J]. Renewable energy, 2012, 46: 49-59.
[17] NOONE C J, TORRILHON M, MITSOS A.Heliostat field optimization: a new computationally efficient model and biomimetic layout[J]. Solar energy, 2012, 86(2): 792-803.
PDF(6875 KB)

Accesses

Citation

Detail

Sections
Recommended

/