EVALUATION OF LITHIUM-ION BATTERY STATE OF HEALTH BASED ON IMPROVED HHO-SVR ALGORITHM

Wu Jian, Jin Hui, Ge Hongjuan, Gong Qi, Chang Qi, Zhao Jiayi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 91-100.

PDF(1116 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1116 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (12) : 91-100. DOI: 10.19912/j.0254-0096.tynxb.2024-0638

EVALUATION OF LITHIUM-ION BATTERY STATE OF HEALTH BASED ON IMPROVED HHO-SVR ALGORITHM

  • Wu Jian1, Jin Hui1, Ge Hongjuan1, Gong Qi2, Chang Qi3, Zhao Jiayi1
Author information +
History +

Abstract

This study extracts health characteristics of lithium batteries from charge and discharge data with incremental capacity analysis to predict the capacity of lithium-ion batteries. Meanwhile, a method for estimating the state of health of lithium-ion batteries is proposed based on the improved Harris hawk optimization algorithm (IHHO) and support vector regression (SVR). To address the problem that the Harris hawk optimization algorithm (HHO) tends to stagnate at local optima, the IHHO algorithm introduces a pooling mechanism and a migrating search strategy based on the HHO algorithm, while modifying the position update equation to prevent premature convergence. Based on comparisons using the CEC2017 test suite, the optimization capabilities of IHHO and HHO algorithms are evaluated. This shows that the IHHO algorithm has a higher convergence speed and optimization accuracy. For some test functions, the optimization accuracy of the IHHO algorithm is improved by more than three orders of magnitude, effectively avoiding premature convergence. In addition, the comparative experiments are conducted on the NASA lithium-ion battery dataset to optimize the standard SVR with IHHO and HHO algorithms. The results show that IHHO-SVR significantly improves the prediction accuracy of the state of health, reducing the root mean square error by more than 40% compared to the HHO-SVR. In addition, comparisons with other literature models indicate the superior performance of the IHHO-SVR model. For certain prediction results, the root mean square error of IHHO-SVR is reduced by at least 15%.

Key words

lithium-ion battery / state of health / capacity increment analysis / improved Harris hawk optimization algorithm / support vector regression

Cite this article

Download Citations
Wu Jian, Jin Hui, Ge Hongjuan, Gong Qi, Chang Qi, Zhao Jiayi. EVALUATION OF LITHIUM-ION BATTERY STATE OF HEALTH BASED ON IMPROVED HHO-SVR ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(12): 91-100 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0638

References

[1] 杨斌, 樊立萍, 高迎慧, 等. 超高功率密度锂离子电池放电性能及容量预估研究[J]. 太阳能学报, 2023, 44(11): 419-425.
YANG B, FAN L P, GAO Y H, et al.Research on discharge performance and capacity prediction of ultra-high power density lithium-ion batteries[J]. Acta energiae solaris sinica, 2023, 44(11): 419-425.
[2] 王超君, 陈翔, 彭思侃, 等. 锂离子电池发展现状及其在航空领域的应用分析[J]. 航空材料学报, 2021, 41(3): 83-95.
WANG C J, CHEN X, PENG S K, et al.Recent advances in lithium-ion batteries and their applications towards aerospace[J]. Journal of aeronautical materials, 2021, 41(3): 83-95.
[3] CHEN J G, HAN X B, SUN T, et al.Analysis and prediction of battery aging modes based on transfer learning[J]. Applied energy, 2024, 356: 122330.
[4] 杨智鹏, 宋政湘, 孟锦豪, 等. 基于单体到模组迁移的磷酸铁锂储能系统SOH评估方法[J]. 高电压技术, 2023, 49(10): 4142-4149.
YANG Z P, SONG Z X, MENG J H, et al.SOH evaluation method for LFP energy storage system based on cell-to-module transfer[J]. High voltage engineering, 2023, 49(10): 4142-4149.
[5] 金辉, 胡寅逍, 葛红娟, 等. 基于分段惩罚参数SVM算法的锂电池失效识别[J]. 西南交通大学学报, 2025, 60(3): 770-780.
JIN H, HU Y X, GE H J, et al.Lithium battery failure identification based on segmented penalty parameter SVM algorithm[J]. Jounal of Southwest Jiaotong University, 2025, 60(3): 770-780.
[6] 谢松, 巩译泽, 李明浩. 锂离子电池在民用航空领域中应用的进展[J]. 电池, 2020, 50(4): 388-392.
XIE S, GONG Y Z, LI M H.Progress in application of Li-ion battery in civil aviation field[J]. Battery bimonthly, 2020, 50(4): 388-392.
[7] 吴青峰, 杨凯义, 于少娟, 等. 基于无通讯的微电网储能系统主动SOH协同控制方案[J]. 太阳能学报, 2023, 44(5): 40-47.
WU Q F, YANG K Y, YU S J, et al.Active SOH cooperative control scheme of microgrid energy storage systems based on no-communication[J]. Acta energiae solaris sinica, 2023, 44(5): 40-47.
[8] CHE Y H, HU X S, LIN X K, et al.Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects[J]. Energy & environmental science, 2023, 16(2): 338-371.
[9] KHODADADI SADABADI K, JIN X, RIZZONI G.Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of power sources, 2021, 481: 228861.
[10] 李炳金, 韩晓霞, 张文杰, 等. 锂离子电池剩余使用寿命预测方法综述[J]. 储能科学与技术, 2024, 13(4): 1266-1276.
LI B J, HAN X X, ZHANG W J, et al.Review of the remaining useful life prediction methods for lithium-ion batteries[J]. Energy storage science and technology, 2024, 13(4): 1266-1276.
[11] ELMAHALLAWY M, ELFOULY T, ALOUANI A, et al.A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction[J]. IEEE access, 2022, 10: 119040-119070.
[12] 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
HE B C, YANG X M, WANG J S, et al.Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta energiae solaris sinica, 2022, 43(5): 484-491.
[13] 魏孟, 王桥, 叶敏, 等. 基于NARX动态神经网络的锂离子电池剩余寿命间接预测[J]. 工程科学学报, 2022, 44(3): 380-388.
WEI M, WANG Q, YE M, et al.An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network[J]. Chinese journal of engineering, 2022, 44(3): 380-388.
[14] CHEN J X, HU Y J, ZHU Q, et al.A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging[J]. Energy, 2023, 282: 128782.
[15] OUYANG M S, SHEN P C.Prediction of remaining useful life of lithium batteries based on WOA-VMD and LSTM[J]. Energies, 2022, 15(23): 8918.
[16] 张振全, 李醒飞, 杨少波. 基于AR-SVR模型的有效波高短期预测[J]. 太阳能学报, 2021, 42(7): 15-20.
ZHANG Z Q, LI X F, YANG S B.Short-term prediction of significant wave height based on AR-SVR model[J]. Acta energiae solaris sinica, 2021, 42(7): 15-20.
[17] HUANG W C, LIU H Y, ZHANG Y, et al.Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM[J]. Applied soft computing, 2021, 109: 107541.
[18] HEIDARI A A, MIRJALILI S, FARIS H, et al.Harris Hawks optimization: algorithm and applications[J]. Future generation computer systems, 2019, 97: 849-872.
[19] 陈永辉, 苏建徽, 解宝, 等. 基于HHO-FA的PEMFC电堆辨识建模[J]. 太阳能学报, 2024, 45(3): 282-289.
CHEN Y H, SU J H, XIE B, et al.Identification modeling of pemfc stack based on HHO-FA[J]. Acta energiae solaris sinica, 2024, 45(3): 282-289.
[20] NGUYEN H, BUI X N, TOPAL E.Enhancing predictions of blast-induced ground vibration in open-pit mines: comparing swarm-based optimization algorithms to optimize self-organizing neural networks[J]. International journal of coal geology, 2023, 275: 104294.
[21] KUMAR T S, JOTHILAKSHMI S, JAMES B C, et al.HHO-based vector quantization technique for biomedical image compression in cloud computing[J]. International journal of image and graphics, 2023, 23(3): 2240008.
[22] 闫晓斌, 方洋旺, 彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京航空航天大学学报, 2024, 50(8): 2636-2645.
YAN X B, FANG Y W, PENG W S.Multi-objective harris hawk optimization algorithm based on adaptive Gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2636-2645.
[23] 胡振辉, 袁鹏, 司先才, 等. 数据驱动的潮流能水轮机叶片翼型性能保真替代计算模型对比研究[J]. 太阳能学报, 2022, 43(12): 495-502.
HU Z H, YUAN P, SI X C, et al.Comparative study of surrogate calculation models for performance of blade hydrofoil of tidal turbine based on data-driven[J]. Acta energiae solaris sinica, 2022, 43(12): 495-502.
[24] 尤勇, 孟云龙, 吴景涛, 等. 基于WOA-SVR的汽车运动状态估计[J/OL]. 中国机械工程, 2024: 1-10. (2024-03-02). https://kns.cnki.net/kcms/detail/42.1294.TH.2024030
1.0928.010.html.
YOU Y, MENG Y L, WU J T, et al. Automobile motion state estimation based on WOA-SVR[J/OL]. China mechanical engineering, 2024: 1-10. (2024-03-02). https://kns.cnki.net/kcms/detail/42.1294.TH.20240301.092
8. 010.html.
[25] YAN X A, HUA X, JIANG D, et al.A novel robust intelligent fault diagnosis method for rolling bearings based on SPAVMD and WOA-LSSVM under noisy conditions[J]. Measurement science and technology, 2024, 35(5): 056121.
[26] HU R X, BAO L Y, DING H W, et al.Analysis of the influence of population distribution characteristics on swarm intelligence optimization algorithms[J]. Information sciences, 2023, 645: 119340.
[27] WANG M, WANG J S, LI X D, et al.Harris hawk optimization algorithm based on Cauchy distribution inverse cumulative function and tangent flight operator[J]. Applied intelligence, 2022, 52(10): 10999-11026.
[28] NADIMI-SHAHRAKI M H, ZAMANI H, MIRJALILI S. Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study[J]. Computers in biology and medicine, 2022, 148: 105858.
[29] ZHOU K, WANG W Y, HU T, et al.Time series forecasting and classification models based on recurrent with attention mechanism and generative adversarial networks[J]. Sensors, 2020, 20(24): 7211.
[30] 吴伟丽, 卢双双. 基于PCA-CEEMDAN和改进SVR的锂电池RUL预测[J]. 电源学报, 2025, 23(6): 267-280.
WU W L, LU S S.Prediction of lithium battery RUL based on PCA-CEEMDAN and improved SVR[J]. Journal of power supply, 2025, 23(6): 267-280.
[31] 李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10): 3244-3258.
LI Y S, KAN H D, GUO Z N, et al.Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD-LSTM-GPR[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3244-3258.
[32] 金辉, 胡寅逍, 葛红娟, 等. 基于改进GWO-SVR算法的锂电池剩余寿命预测[J]. 工程科学学报, 2024, 46(3): 514-524.
JIN H, HU Y X, GE H J, et al.Remaining useful life prediction for lithium-ion batteries based on an improved GWO-SVR algorithm[J]. Chinese journal of engineering, 2024, 46(3): 514-524.
PDF(1116 KB)

Accesses

Citation

Detail

Sections
Recommended

/