STUDY ON FRONT METALLIZATION OF TOPCON SOLAR CELL BY LECO PROCESS

Chen Dong, Fu Ming, Li Yunjun, Fan Lin, Pan Chaopeng, Xu Hejian

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 391-397.

PDF(6136 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(6136 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (5) : 391-397. DOI: 10.19912/j.0254-0096.tynxb.2024-0723

STUDY ON FRONT METALLIZATION OF TOPCON SOLAR CELL BY LECO PROCESS

  • Chen Dong1,2, Fu Ming1,2, Li Yunjun2, Fan Lin2, Pan Chaopeng2, Xu Hejian2
Author information +
History +

Abstract

Combining laser enhanced contact optimization (LECO) technology on the front of cells and preparing n-type TOPCon solar cells metallized electrode, the reliability of metal electrode is investigated by simulating damp and hot condition of outdoor work through acetic acid spray experiment. The glass performance is analyzed via TGA-DSC. The electrical performances of solar cells before and after LECO treatment are analyzed. It is found that the transition temperature (Tg) of glass for the LECO proces should not be too low, and the etching ability should not be too strong. Pb-B-Si and Pb-B-Si-Bi system glasses are more suitable for the LECO process than Pb-B-Te system glasses. The acetic acid resistance of the cells is analyzed,and it is found that the conversion efficiency of Pb-B-Si-Bi glass front silver electrode has less attenuation.

Key words

solar cells / metallization / reliability / conversion efficiency / glass powder / LECO process

Cite this article

Download Citations
Chen Dong, Fu Ming, Li Yunjun, Fan Lin, Pan Chaopeng, Xu Hejian. STUDY ON FRONT METALLIZATION OF TOPCON SOLAR CELL BY LECO PROCESS[J]. Acta Energiae Solaris Sinica. 2025, 46(5): 391-397 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0723

References

[1] FELDMANN F, BIVOUR M, REICHEL C, et al.Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar energy materials and solar cells, 2014, 120: 270-274.
[2] SCHMIDT J, PEIBST R, BRENDEL R.Surface passivation of crystalline silicon solar cells: present and future[J]. Solar energy materials and solar cells, 2018, 187: 39-54.
[3] KUMAR P, PFEFFER M, WILLSCH B, et al.N-type single-crystalline Si solar cells: front side metallization for solar cells reaching 20% efficiency[J]. Solar energy materials and solar cells, 2016, 157: 200-208.
[4] SHOU C H, ZHENG J M, HAN Q L, et al.Optimization of tunnel-junction for perovskite/tunnel oxide passivated contact (TOPCon) tandem solar cells[J]. Physica status solidi (a), 2021, 218(24): 2100562.
[5] WÖHRLE N, LOHMÜLLER E, GREULICH J, et al. Towards understanding the characteristics of Ag-Al spiking on boron-doped silicon for solar cells[J]. Solar energy materials and solar cells, 2016, 146: 72-79.
[6] AOYAMA T, AOKI M, SUMITA I, et al.Effects of particle size of aluminum powder in silver/aluminum paste on n-type solar cells[J]. AIMS materials science, 2018, 5(4): 614-623.
[7] KRASSOWSKI E, GROßER S, TUREK M, et al. Investigation of monocrystalline p-type PERC cells featuring the laser enhanced contact optimization process and new LECO paste[C]//Proceedings of The 9th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells. Genk, Belgium, 2021: 020005.
[8] KRASSOWSKI E, JAECKEL B, PANDER M, et al.Assessing the long-term stability of laser enhanced contact optimization (LECO) treated PERC cells in PV modules by extended indoor and outdoor durability tests[J]. EPJ photovoltaics, 2023, 14: 13.
[9] FELLMETH T, HÖFFLER H, MACK S, et al. Laser-enhanced contact optimization on iTOPCon solar cells[J]. Progress in photovoltaics: research and applications, 2022, 30(12): 1393-1399.
[10] GROßER S, KRASSOWSKI E, SWATEK S, et al. Microscale contact formation by laser enhanced contact optimization[J]. IEEE journal of photovoltaics, 2022, 12(1): 26-30.
[11] 陈筑, 徐林. 晶体硅太阳电池接触电阻测量方法[J]. 太阳能学报, 2014, 35(5):750-755.
CHEN Z, XU L.The measurement method of contact resistance on crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2014, 35(5):750-755.
[12] 徐颖, 张勇. 测量玻璃化转变温度的几种热分析技术[J]. 分析仪器, 2010(3): 57-60.
XU Y, ZHANG Y.Thermal analysis techniques for measurement of glass transition temperature[J]. Analytical instrumentation, 2010(3):57-60.
[13] 张胡广, 付明, 汪小红, 等. 利用受激发光特性分析n型太阳电池金属电极性能研究[J]. 太阳能学报, 2023, 44(6): 193-197.
ZHANG H G, FU M, WANG X H, et al.Study on metal electrodes performance of n-type solar cells by excition luminescence characteristics[J]. Acta energiae solaris sinica, 2023, 44(6): 193-197.
[14] KEMPE M D, JORGENSEN G J, TERWILLIGER K M, et al.Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices[J]. Solar energy materials and solar cells, 2007, 91(4): 315-329.
[15] KRAFT A, LABUSCH L, ENSSLEN T, et al.Investigation of acetic acid corrosion impact on printed solar cell contacts[J]. IEEE journal of photovoltaics, 2015, 5(3): 736-743.
[16] IQBAL N, LI M J, SAKTHIVEL T S, et al.Impact of acetic acid exposure on metal contact degradation of different crystalline silicon solar cell technologies[J]. Solar energy materials and solar cells, 2023, 250(5): 112089.
PDF(6136 KB)

Accesses

Citation

Detail

Sections
Recommended

/