TWO-TIER OPTIMAL SCHEDULING OF INTEGRATED ELECTRIC-HYDROGEN ENERGY SYSTEM CONSIDERINGELECTRIC-HYDROGEN CO-GENERATION SYSTEM

Yang Mao, Wang Yuxin, Su Xin, Zhu Yidan, Wang Jinxin

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 661-668.

PDF(1276 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1276 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 661-668. DOI: 10.19912/j.0254-0096.tynxb.2024-0726

TWO-TIER OPTIMAL SCHEDULING OF INTEGRATED ELECTRIC-HYDROGEN ENERGY SYSTEM CONSIDERINGELECTRIC-HYDROGEN CO-GENERATION SYSTEM

  • Yang Mao, Wang Yuxin, Su Xin, Zhu Yidan, Wang Jinxin
Author information +
History +

Abstract

In order to reduce the impact of wind power prediction errors on the economics and accuracy of dispatch of electricity and hydrogen integrated energy systems, an intraday two-tier rolling optimal dispatch method for integrated energy systems that takes into account the electric-hydrogen cogeneration system is proposed. First, considering the characteristics of electricity hydrogen production, the electric-hydrogen cogeneration system is applied in the integrated energy system. Secondly, a rolling optimization method is adopted in intraday dispatch. In the rolling cycle, the upper level model controls the electricity and hydrogen cogeneration system based on the improved exponential moving average, and uses interval prediction as a control constraint to provide stable power supply for the integrated energy system; The intraday lower-level model determines the intra-period dispatch plan based on the upper-level results; Finally, different scenarios are compared through numerical examples. The results show that the proposed method can reduce the impact of wind power prediction errors on dispatch results while improving system economy.

Key words

integrated energy system / intraday dispatch / interval power prediction / two-tier optimal scheduling / electric hydrogen 1cogeneration system

Cite this article

Download Citations
Yang Mao, Wang Yuxin, Su Xin, Zhu Yidan, Wang Jinxin. TWO-TIER OPTIMAL SCHEDULING OF INTEGRATED ELECTRIC-HYDROGEN ENERGY SYSTEM CONSIDERINGELECTRIC-HYDROGEN CO-GENERATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 661-668 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0726

References

[1] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207.
ZHANG S X, WANG D Y, CHENG H Z, et al.Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of electric power systems, 2022, 46(8): 189-207.
[2] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[3] 常青. 首个国家层面氢能产业标准体系建设指南发布: 氢内燃机迎发展新机遇[J]. 商用汽车, 2023(4): 19-20.
CHANG Q.The first guidelines for the construction of the hydrogen energy industry standard system at national level released: hydrogen internal combustion engines to embrace new opportunities for development[J]. Commercial vehicle, 2023(4): 19-20.
[4] 丁剑, 方晓松, 宋云亭, 等. 碳中和背景下西部新能源传输的电氢综合能源网构想[J]. 电力系统自动化, 2021, 45(24): 1-9.
DING J, FANG X S, SONG Y T, et al.Conception of electricity and hydrogen integrated energy network for renewable energy transmission in western China under background of carbon neutralization[J]. Automation of electric power systems, 2021, 45(24): 1-9.
[5] 陈胜, 张景淳, 卫志农, 等. 面向能源转型的电-气-氢综合能源系统规划与运行[J]. 电力系统自动化, 2023, 47(19): 16-30.
CHEN S, ZHANG J C, WEI Z N, et al.Energy transition oriented planning and operation of electricity-gas-hydrogen integrated energy system[J]. Automation of electric power systems, 2023, 47(19): 16-30.
[6] 陈胜, 张景淳, 韩海腾, 等. 计及辅助服务的电-气-氢综合能源系统优化调度[J]. 电力系统自动化, 2023, 47(11): 110-120.
CHEN S, ZHANG J C, HAN H T, et al.Optimal dispatch of electricity-gas-hydrogen integrated energy system considering auxiliary service[J]. Automation of electric power systems, 2023, 47(11): 110-120.
[7] 张贵鹏, 程静. 计及碳捕集的虚拟电厂-电制氢多主体协调优化[J]. 太阳能学报, 2023, 44(8): 92-101.
ZHANG G P, CHENG J.Multi-agent coordination and optimization of vpps-p2h based on carbon capture[J]. Acta energiae solaris sinica, 2023, 44(8): 92-101.
[8] 林今, 余志鹏, 张信真, 等. 可再生能源电制氢合成氨系统的并/离网运行方式与经济性分析[J]. 中国电机工程学报, 2024, 44(1): 117-127.
LIN J, YU Z P, ZHANG X Z, et al.On-grid/off-grid operation mode and economic analysis of renewable power to ammonia system[J]. Proceedings of the CSEE, 2024, 44(1): 117-127.
[9] 孔令国, 陈钥含, 万燕鸣, 等. 计及调峰辅助服务的风电场/群经济制氢容量计算[J]. 电工技术学报, 2023, 38(16): 4406-4420.
KONG L G, CHEN Y H, WAN Y M, et al.Calculation of economics of power-to-gas capacity for wind farms/clusters with peak regulation auxiliary service response[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4406-4420.
[10] 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳” 目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179.
MENG X Y, CHEN M Y, GU A L, et al.China's hydrogen development strategy in the context of double carbon targets[J]. Natural gas industry, 2022, 42(4): 156-179.
[11] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG X, et al.Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural gas industry, 2022, 42(4): 1-20.
[12] HOUBEN N, COSIC A, STADLER M, et al.Optimal dispatch of a multi-energy system microgrid under uncertainty: a renewable energy community in Austria[J]. Applied energy, 2023, 337: 120913.
[13] 朱玲, 李威, 王骞, 等. 基于校正条件生成对抗网络的风电场群绿氢储能系统容量配置[J]. 电工技术学报, 2024, 39(3): 714-730.
ZHU L, LI W, WANG Q, et al.Wind farms-green hydrogen energy storage system capacity sizing method based on corrected-conditional generative adversarial network[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 714-730.
[14] 徐伟航, 杨茂, 孙莉. 利用电化学储能追踪风电预测曲线的风储联合调度经济性分析[J]. 南方电网技术, 2023, 17(11): 87-96.
XU W H, YANG M, SUN L.Economic analysis of wind storage joint scheduling using battery energy storage to track wind power prediction curve[J]. Southern power system technology, 2023, 17(11): 87-96.
[15] 邹宇航, 曾艾东, 郝思鹏, 等. 阶梯式碳交易机制下综合能源系统多时间尺度优化调度[J]. 电网技术, 2023, 47(6): 2185-2198.
ZOU Y H, ZENG A D, HAO S P, et al.Multi-time-scale optimal dispatch of integrated energy systems under stepped carbon trading mechanism[J]. Power system technology, 2023, 47(6): 2185-2198.
[16] 李天格, 胡志坚, 陈志, 等. 计及电-气-热-氢需求响应的综合能源系统多时间尺度低碳运行优化策略[J]. 电力自动化设备, 2023, 43(1): 16-24.
LI T G, HU Z J, CHEN Z, et al.Multi-time scale low-carbon operation optimization strategy of integrated energy system considering electricity-gas-heat-hydrogen demand response[J]. Electric power automation equipment, 2023, 43(1): 16-24.
[17] 杨国山, 朱杰, 杨昌海, 等. 适应波动性风电的电制氢合成甲醇系统柔性优化调度[J]. 电力建设, 2023, 44(11): 149-162.
YANG G S, ZHU J, YANG C H, et al.Flexible optimal scheduling of electric power for hydrogen-based methanol synthesis system adapting to fluctuating wind power[J]. Electric power construction, 2023, 44(11): 149-162.
[18] 叶俊. 促进风电消纳的电热综合能源系统优化调度研究[D]. 武汉: 武汉大学, 2018.
YE J.Research on optimal scheduling of integrated electricity and heat energy system with promoting wind power integration[D]. Wuhan: Wuhan University, 2018.
[19] 齐德卿. 风氢耦合系统容量配比及能量管理策略研究[D]. 吉林: 东北电力大学, 2017.
QI D Q.Study on capacity allocation and energy management strategy of wind hydrogen coupling system[D]. Jilin: Northeast Dianli University, 2017.
[20] 曾煜轩, 冀爽, 王金鑫. 计及制氢效率变化与氢能绿证的综合能源系统优化调度[J]. 东北电力大学学报, 2024, 44(1): 25-33.
ZENG Y X, JI S, WANG J X.Optimization dispatch of integrated energy systems considering hydrogen production efficiency variation and hydrogen energy green certificate[J]. Journal of Northeast Electric Power University, 2024, 44(1): 25-33.
[21] 李志伟, 赵雨泽, 吴培, 等. 基于制氢设备精细建模的综合能源系统绿氢蓝氢协调低碳优化策略[J].电网技术, 2024, 48(6): 2317-2326.
LI Z W, ZHAO Y Z, WU P, et al.Coordinated low-carbon optimization strategy of green hydrogen and blue hydrogen for integrated energy system based on fine modeling of hydrogen production equipment[J]. Grid technology, 2024, 48(6): 2317-2326.
PDF(1276 KB)

Accesses

Citation

Detail

Sections
Recommended

/