COMPREHENSIVE PERFORMANCE EVALUATION OF PEMFC CONSIDERING GDL COMPRESSION DEFORMATION

Sun Xiuxiu, Wen Panqi, Zhang Qian, Jing Guoxi

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 375-381.

PDF(4047 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4047 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 375-381. DOI: 10.19912/j.0254-0096.tynxb.2024-0733

COMPREHENSIVE PERFORMANCE EVALUATION OF PEMFC CONSIDERING GDL COMPRESSION DEFORMATION

  • Sun Xiuxiu1,2, Wen Panqi1,2, Zhang Qian1,2, Jing Guoxi1,2
Author information +
History +

Abstract

The compression deformation of the GDL is caused by assembly force. To determine the optimal assembly force for improving fuel cell performance, the GDL deformation, current density distribution, and oxygen concentration distribution of the PEMFC under different assembly forces were analyzed based on experimental and numerical simulation methods. The PEMFC performance was comprehensively evaluated by considering multiple parameters such as pressure drop, power density, and current density distribution. The results show that the assembly force resulted in nonlinear stress-strain compression of the GDL under the rib, with compression reaching 61 % at the assembly force of 2.0 MPa. The power density of PEMFC at 1.0 MPa increased by 4.57 % compared to the results of 0.5 MPa under 0.95 A cm-2. Moreover, the overall performance of PEMFC at 1.0 MPa was the best by using the entropy weighting method.

Key words

proton exchange membrane fuel cells / assembly / contact resistance / compressive deformation / optimal assembly force / synthesized assessment

Cite this article

Download Citations
Sun Xiuxiu, Wen Panqi, Zhang Qian, Jing Guoxi. COMPREHENSIVE PERFORMANCE EVALUATION OF PEMFC CONSIDERING GDL COMPRESSION DEFORMATION[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 375-381 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0733

References

[1] 赵洪山, 潘思潮, 吴雨晨, 等. 基于深度确定性策略梯度的PEMFC的水泵和散热器联合控制研究[J]. 太阳能学报, 2024, 45(6): 92-101.
ZHAO H S, PAN S C, WU Y C, et al.Study on joint control of pump and radiator in PEMFC based on deep deterministic policy gradient[J]. Acta energiae solaris sinica, 2024, 45(6): 92-101.
[2] 陈永辉, 苏建徽, 解宝, 等. 基于HHO-FA的PEMFC电堆辨识建模[J]. 太阳能学报, 2024, 45(3): 282-289.
CHEN Y H, SU J H, XIE B, et al.Identification modeling of PEMFC stack based on HHO-FA[J]. Acta energiae solaris sinica, 2024, 45(3): 282-289.
[3] 陈宇轩, 陈涛, 刘士华, 等. 装配扭矩对PEMFC性能的影响[J]. 电池, 2020, 50(3): 215-219.
CHEN Y X, CHEN T, LIU S H, et al.Effect of assembly torque on the performance of PEMFC[J]. Battery bimonthly, 2020, 50(3): 215-219.
[4] 周怡博, 王建建. 装配压力对燃料电池扩散层影响的研究[J]. 系统仿真学报, 2016, 28(4): 991-996.
ZHOU Y B, WANG J J.Effect of assembly force on gas diffusion layer for proton exchange membrane fuel cell[J]. Journal of system simulation, 2016, 28(4): 991-996.
[5] JING G X, HU C B, QIN Y Z, et al.Complex mechanisms of PEMFC performance variations influenced by both structural deformation and contact resistance under the clamping force[J]. International journal of hydrogen energy, 2024, 58: 137-148.
[6] MOVAHEDI M, RAMIAR A, RANJBER A A.3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field[J]. Energy, 2018, 142: 617-632.
[7] JIANG W, ZHANG K, HUANG X, et al.Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell[J]. Applied energy, 2024, 353: 122021.
[8] 曹爱红, 王来华, 代世勋. 基于装配力的燃料电池性能数值解析[J]. 电源技术, 2021, 45(7): 844-847, 801.
CAO A H, WANG L H, DAI S X.Study on performance of fuel cell based on assembly force[J]. Chinese journal of power sources, 2021, 45(7): 844-847, 801.
[9] 蔡永华, 胡健平, 罗子贤. PEMFC船形堵块阴极流场的性能[J]. 电池, 2024, 54(1): 14-18.
CAI Y H, HU J P, LUO Z X.The performance of cathode flow field with ship-like block in PEMFC[J]. Battery bimonthly, 2024, 54(1): 14-18.
[10] 张拴羊, 杨其国, 徐洪涛, 等. 不同流场结构对PEMFC性能影响的模拟研究[J]. 太阳能学报, 2023, 44(8): 62-67.
ZHANG S Y, YANG Q G, XU H T, et al.Numerical simulation on effect of different flow fields on performance of PEMFC[J]. Acta energiae solaris sinica, 2023, 44(8): 62-67.
[11] JIAO K, PARK J, LI X G.Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell[J]. Applied energy, 2010, 87(9): 2770-2777.
[12] ZAMEL N, LI X G, SHEN J, et al.Estimating effective thermal conductivity in carbon paper diffusion media[J]. Chemical engineering science, 2010, 65(13): 3994-4006.
[13] TAMAYOL A, MCGREGOR F, BAHRAMI M.Single phase through-plane permeability of carbon paper gas diffusion layers[J]. Journal of power sources, 2012, 204: 94-99.
[14] ZAMEL N, LI X G, SHEN J.Numerical estimation of the effective electrical conductivity in carbon paper diffusion media[J]. Applied energy, 2012, 93: 39-44.
[15] RADHAKRISHNAN V, HARIDOSS P.Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design[J]. Materials & design, 2011, 32(2): 861-868.
[16] KELLER N, VON UNWERTH T.Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC[J]. Applied energy, 2022, 307: 118132.
[17] WEI L, DAFALLA A M, JIANG F M.Effects of reactants/coolant non-uniform inflow on the cold start performance of PEMFC stack[J]. International journal of hydrogen energy, 2020, 45(24): 13469-13482.
PDF(4047 KB)

Accesses

Citation

Detail

Sections
Recommended

/