ULTRASONIC WIND SPEED AND DIRECTION MEASUREMENT BASED ON QUADRATIC FRACTIONAL LOW ORDER COVARIANCE

Liu Xiaosong, Ren Wei, Shan Zebiao, Liu Yunqing

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 34-41.

PDF(1358 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1358 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 34-41. DOI: 10.19912/j.0254-0096.tynxb.2024-0736

ULTRASONIC WIND SPEED AND DIRECTION MEASUREMENT BASED ON QUADRATIC FRACTIONAL LOW ORDER COVARIANCE

  • Liu Xiaosong1, Ren Wei1, Shan Zebiao1,2, Liu Yunqing1
Author information +
History +

Abstract

In order to solve the problems of performance degradation and poor stability of the ultrasonic wind measurement system in the presence of strong impulse noise, a three-element ultrasonic wind vector measurement method using the quadratic fractional low-order covariance algorithm is proposed. The three-element ultrasonic array structure consists of three transceiver-integrated ultrasonic transducers. Based on the system structure and combined with the quadratic fractional low-order covariance algorithm, the propagation time of the ultrasonic wave is obtained, then the wind vector estimation value is obtained. The practicability of the proposed method is verified by the actual wind measurement system and comparative simulation. In the actual measurement, the maximum error of wind speed and wind direction angle is 2.2% and 2.4° respectively, and the measurement accuracy basically meets the requirements of ultrasonic wind direction measurement.

Key words

wind speed and direction measurement / ultrasonic measurement / time delay measurement / quadratic fractional low-order covariance / impulse noise

Cite this article

Download Citations
Liu Xiaosong, Ren Wei, Shan Zebiao, Liu Yunqing. ULTRASONIC WIND SPEED AND DIRECTION MEASUREMENT BASED ON QUADRATIC FRACTIONAL LOW ORDER COVARIANCE[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 34-41 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0736

References

[1] 叶星汝, 董树锋, 严秋雨, 等. 海上风场短时风速混合威布尔逼近方法[J]. 太阳能学报, 2023, 44(11): 224-230.
YE X R, DONG S F, YAN Q Y, et al.Mixed Weibull distribution approximation of short-term offshore wind speed[J]. Acta energiae solaris sinica, 2023, 44(11): 224-230.
[2] SHAN Z B, XIE X R, LIU X S.Wind speed and direction measurement based on three mutually transmitting ultrasonic sensors[J]. IEEE geoscience and remote sensing letters, 2023, 20: 8000205.
[3] 单泽彪, 解晓冉, 刘小松, 等. 互射式三阵元超声波传感器的二次相关测风方法[J]. 电子学报, 2023, 51(9): 2428-2436.
SHAN Z B, XIE X R, LIU X S, et al.Wind measurement with three mutually transmitting ultrasonic sensors based on quadratic correlation method[J]. Acta electronica sinica, 2023, 51(9): 2428-2436.
[4] ZHAO C, CHEN Z Z, LI J, et al.Wind direction estimation using small-aperture HF radar based on a circular array[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(4): 2745-2754.
[5] FIEDLER M, BERG W, AMMON C, et al.Air velocity measurements using ultrasonic anemometers in the animal zone of a naturally ventilated dairy barn[J]. Biosystems engineering, 2013, 116(3): 276-285.
[6] 刘小松, 解晓冉, 单泽彪, 等. 基于互射式三阵元超声波传感器的风矢量测量[J]. 太阳能学报, 2023, 44(9): 411-417.
LIU X S, XIE X R, SHAN Z B, et al.Wind vector measurement based on three mutually transmitting ultrasonic sensors[J]. Acta energiae solaris sinica, 2023, 44(9): 411-417.
[7] 李琦, 魏永星, 刘颉, 等. 基于时差法超声测风系统的声场分析与研究[J]. 海洋技术学报, 2016, 35(1): 68-73.
LI Q, WEI Y X, LIU J, et al.Analysis and research on the acoustic field of the ultrasonic wind measurement system based on the time difference method[J]. Journal of ocean technology, 2016, 35(1): 68-73.
[8] 单泽彪, 于渤力, 徐再祥, 等. 基于二次相关的超声波风速风向测量方法[J]. 仪器仪表学报, 2023, 44(4): 322-329.
SHAN Z B, YU B L, XU Z X, et al.Ultrasonic wind speed and direction measurement method based on quadratic correlation[J]. Chinese journal of scientific instrument, 2023, 44(4): 322-329.
[9] CHENG Z, DEEN M J, PENG H.A low-power gateable vernier ring oscillator time-to-digital converter for biomedical imaging applications[J]. IEEE transactions on biomedical circuits and systems, 2016, 10(2): 445-454.
[10] 冷雪冬, 巴斌, 逯志宇, 等. 基于回溯筛选的稀疏重构时延估计算法[J]. 物理学报, 2016, 65(21): 94-102.
LENG X D, BA B, LU Z Y, et al.Sparse reconstruction time delay estimation algorithm based on backtracking filter[J]. Acta physica sinica, 2016, 65(21): 94-102.
[11] 单泽彪, 刘小松, 鲁胜麟, 等. 基于双阵元超声波接收阵列的风矢量测量[J]. 仪器仪表学报, 2021, 42(2): 228-234.
SHAN Z B, LIU X S, LU S L, et al.Wind vector measurement using dual sensors ultrasonic receiving array[J]. Chinese journal of scientific instrument, 2021, 42(2): 228-234.
[12] 石屹然, 齐金伟, 曲思凝, 等. α和高斯混合噪声背景下超声波风矢量测量[J]. 光学精密工程, 2021, 29(11): 2734.
SHI Y R, QI J W, QU S N, et al.Wind vector measurement based on ultrasonic sensors in the mixed noise of α and Gaussian noise[J]. Optics and precision engineering, 2021, 29(11): 2734.
[13] 单泽彪, 鲁胜麟, 刘小松, 等. 基于高阶累积量的阵列式超声波传感器风速风向测量[J]. 仪器仪表学报, 2021, 42(6): 279-286.
SHAN Z B, LU S L, LIU X S, et al.Wind speed and direction measurement with array ultrasonic sensors based on high-order cumulant[J]. Chinese journal of scientific instrument, 2021, 42(6): 279-286.
[14] CHEN Z, GENG X F, YIN F L.A harmonic suppression method based on fractional lower order statistics for power system[J]. IEEE transactions on industrial electronics, 2016, 63(6): 3745-3755.
[15] 刘小松, 徐再祥, 单泽彪, 等. 基于二次分数低阶协方差的时延估计方法[J]. 电子测量与仪器学报, 2024, 38(2): 112-119.
LIU X S, XU Z X, SHAN Z B, et al.Time delay estimation method based on second-order fraction low-order covariance[J]. Journal of electronic measurement and instrumentation, 2024, 38(2): 112-119.
[16] LANG H T, ZHANG J, ZHANG X, et al.Ship classification in SAR image by joint feature and classifier selection[J]. IEEE geoscience and remote sensing letters, 2016, 13(2): 212-216.
PDF(1358 KB)

Accesses

Citation

Detail

Sections
Recommended

/