OPTIMAL CONFIGURATION OF PHOTOVOLTAIC RESIDUAL ELECTRICITY THERMAL CONVERSION AND HEAT STORAGE SYSTEM IN SOLAR ENERGY ENRICHMENT AREAS

Xiao Zhirui, Chen Yaowen, Wang Dengjia, Gao Meng, Fan Jianhua

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 474-483.

PDF(1297 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1297 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 474-483. DOI: 10.19912/j.0254-0096.tynxb.2024-0744

OPTIMAL CONFIGURATION OF PHOTOVOLTAIC RESIDUAL ELECTRICITY THERMAL CONVERSION AND HEAT STORAGE SYSTEM IN SOLAR ENERGY ENRICHMENT AREAS

  • Xiao Zhirui1, Chen Yaowen1,2, Wang Dengjia1,2, Gao Meng3, Fan Jianhua3
Author information +
History +

Abstract

This paper carries out a study on the optimal configuration of the photovoltaic residual electricity thermal conversion and heat storage system based on the energy system optimisation theory, it establishes a capacity optimisation model of the photovoltaic residual electricity thermal conversion and heat storage system with the goal of minimising the levelized cost of heat(LCOH), and then simulates the optimisation of the system using the TRNSYS analogue simulation platform. The results show that, compared with the system capacity before optimisation, the power of the electric heating boiler and the volume of the water body in the optimised system are both reduced, and although the system's capacity for residual electricity utilization is reduced, the overall CLCOH of the system is reduced, and the economy of the photovoltaic residual electricity thermal conversion and heat storage system has been significantly improved.

Key words

solar energy / heat storage / district heating / photovoltaic system / utilization of residual electricity / optimal design

Cite this article

Download Citations
Xiao Zhirui, Chen Yaowen, Wang Dengjia, Gao Meng, Fan Jianhua. OPTIMAL CONFIGURATION OF PHOTOVOLTAIC RESIDUAL ELECTRICITY THERMAL CONVERSION AND HEAT STORAGE SYSTEM IN SOLAR ENERGY ENRICHMENT AREAS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 474-483 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0744

References

[1] PING X G, JIANG Z G, LI C W.Status and future perspectives of energy consumption and its ecological impacts in the Qinghai-Tibet region[J]. Renewable and sustainable energy reviews, 2011, 15(1): 514-523.
[2] ZHOU Y, LIU Y F, WANG D J, et al.A novel combined multi-task learning and Gaussian process regression model for the prediction of multi-timescale and multi-component of solar radiation[J]. Journal of cleaner production, 2021, 284: 124710.
[3] 赵斌, 梁告, 姜孟浩, 等. 高原高寒地区并网光储电站设计与运行研究[J]. 中国电力, 2022, 55(12): 51-60.
ZHAO B, LIANG G, JIANG M H, et al.Design and operation of grid-connected photovoltaic energy storage power station in frigid plateau region[J]. Electric power, 2022, 55(12): 51-60.
[4] SŁOMCZYŃSKA K, MIREK P, PANOWSKI M. Solar heating for pit thermal energy storage-comparison of solar thermal and photovoltaic systems in TRNSYS 18[J]. Advances in science and technology research journal, 2022, 16(5): 40-51.
[5] ZHANG R C, WANG D J, LIU Y F, et al.Economic optimization of auxiliary heat source for centralized solar district heating system in Tibetan Plateau, China[J]. Energy conversion and management, 2021, 243: 114385.
[6] XIE Z C, XIANG Y T, WANG D J, et al.Numerical investigations of long-term thermal performance of a large water pit heat storage[J]. Solar energy, 2021, 224: 808-822.
[7] BAI Y K, YANG M, FAN J H, et al.Influence of geometry on the thermal performance of water pit seasonal heat storages for solar district heating[J]. Building simulation, 2021, 14(3): 579-599.
[8] 张睿超, 王登甲, 刘艳峰, 等. 西藏高原离网光伏供暖系统容量配置优化研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(6): 828-834, 788.
ZHANG R C, WANG D J, LIU Y F, et al.The system form and case analysis of off-grid photovoltaic heating in Tibet Plateau[J]. Journal of Xi'an University of Architecture & Technology (natural science edition), 2021, 53(6): 828-834, 788.
[9] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. New York: John Wiley & Sons, 2013.
[10] 胡冰, 李勇, 王登甲, 等. 双层相变材料复合水箱蓄热特性研究[J]. 太阳能学报, 2024, 45(7): 190-198.
HU B, LI Y, WANG D J, et al.Heat storage characteristics of hybrid tank with double-layer phase change materials[J]. Acta energiae solaris sinica, 2024, 45(7): 190-198.
[11] KUSUDA T, ACHENBACH P R.Earth temperature and thermal diffusivity at selected stations in the United States[J]. ASHRAE transactions, 1965, 71(1): 61-74.
[12] INCROPERA F P, DEWIFF D P.Introduction to heat transfer[M]. 5th ed. Hoboken: John Wiley & Sons, Inc, 1985.
[13] DAHASH A, OCHS F, JANETTI M B, et al.Advances in seasonal thermal energy storage for solar district heating applications: a critical review on large-scale hot-water tank and pit thermal energy storage systems[J]. Applied energy, 2019, 239: 296-315.
[14] CHEN Y W, QUAN M C, WANG D J, et al.Energy, exergy, and economic analysis of a solar photovoltaic and photothermal hybrid energy supply system for residential buildings[J]. Building and environment, 2023, 243: 110654.
[15] 刘艳峰, 穆婷, 罗西, 等. 光照资源富集区太阳能集中供热系统容量配置及热网管径协同设计优化研究[J]. 太阳能学报, 2023, 44(1): 85-93.
LIU Y F, MU T, LUO X, et al.Equipment capacity and heating network pipe diameter optimization of centralized solar heating system in areas abundant with solar energy resources[J]. Acta energiae solaris sinica, 2023, 44(1): 85-93.
[16] 刘艳峰, 周位华, 罗西, 等. 川西高山峡谷区空气源热泵多源互补供热系统热源方案比选及优化设计[J]. 太阳能学报, 2021, 42(10): 478-486.
LIU Y F, ZHOU W H, LUO X, et al.Comparison and optimal design of multi-source complementary heating system based on air source heat pump in alpine canyon area of western Sichuan[J]. Acta energiae solaris sinica, 2021, 42(10): 478-486.
[17] 王嘉阳, 周保荣, 吴伟杰, 等. 西部集中式与东部分布式光伏平准化度电成本研究[J]. 南方电网技术, 2020, 14(9): 80-89.
WANG J Y, ZHOU B R, WU W J, et al.Levelized cost of energy of centralized photovoltaic power in Western China and distributed photovoltaic power in Eastern China[J]. Southern power system technology, 2020, 14(9): 80-89.
[18] 李晓霞. 太阳能跨季节储/供热系统动态特性及运行策略研究[D]. 兰州: 兰州理工大学, 2021.
LI X X.Research on dynamic characteristic and control strategy of solar heating system with seasonal thermal energy storage[D]. Lanzhou: Lanzhou University of Technology, 2021.
[19] 李倩茹. 高原寒冷地区太阳能-空气源热泵复合供暖系统的应用研究[D]. 重庆: 重庆大学, 2018.
LI Q R.Study on the application of solar-air source combined heating system in plateau cold regions[D]. Chongqing: Chongqing University, 2018.
[20] 全梦晨. 民居建筑光热光伏供能系统运行特性分析及匹配优化研究[D]. 西安: 西安建筑科技大学, 2023.
QUAN M C.Operational performance and optimization analysis of the solar photovoltaic and photothermal hybrid energy supply system applied to residential buildings[D]. Xi'an: Xi'an University of Architecture and Technology, 2023.
[21] ONG S, CLARK N.Commercial and residential hourly load profiles for all TMY3 locations in the United States[R]. National Renewable Energy Laboratory, 2014.
[22] GB/T 50293—2014, 城市电力规划规范[S].
GB/T 50293—2014, Code for urban electric power planning[S].
[23] CJJ/T 34—2022, 城镇供热管网设计标准[S].
CJJ/T 34—2022, Design standard for urban heating pipe network[S].
[24] GB 50736—2012,民用建筑供暖通风与空气调节设计规范[S].
GB 50736—2012,Design code for heating ventilation and air conditioning of civil buildings[S].
[25] 陈耀文, 郭萌萌, 刘艳峰, 等. 西北村镇太阳能与沼气联合供暖系统优化配置研究[J]. 暖通空调, 2023, 53(7): 151-159.
CHEN Y W, GUO M M, LIU Y F, et al.Study on optimal configuration of solar and biogas combined heating system in northwest rural areas[J]. Heating ventilating & air conditioning, 2023, 53(7): 151-159.
PDF(1297 KB)

Accesses

Citation

Detail

Sections
Recommended

/