CHARACTERIZATION OF THERMAL AND MOISTURE TRANSFER OF BIPV/T WALLS IN SEVERE COLD REGIONS

Yu Shui, Xu Yijia, Sun Shengkun, Cui Enning, Liu Yang

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 501-509.

PDF(5078 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5078 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 501-509. DOI: 10.19912/j.0254-0096.tynxb.2024-0768

CHARACTERIZATION OF THERMAL AND MOISTURE TRANSFER OF BIPV/T WALLS IN SEVERE COLD REGIONS

  • Yu Shui, Xu Yijia, Sun Shengkun, Cui Enning, Liu Yang
Author information +
History +

Abstract

As building integrated photovoltaic/thermal(BIPV/T)walls are structurally different from ordinary walls, which leads to changes in their thermal and moisture insulation performance, this study takes Shenyang, a cold region, as a case study. A two-dimensional numerical model of coupled heat and moisture transfer was established to study the internal transfer processes inside the BIPV/T walls under the winter conditions, and to experimentally validate the validity of the method. Comparing the BIPV/T wall with a conventional externally insulated wall, the results show that the time lag factor (τ=4-5 h) and attenuation factor (f=0.064) of the BIPV/T wall are superior to those of the ordinary wall (τ=2-4 h, f=0.151), indicating better thermal performance. It can significantly improve the thermal comfort of the indoor environment. The internal water content of BIPV/T wall is 6% lower than that of ordinary wall, and it can accelerate the decrease of water content in the wall, keeping the moisture content within BIPV/T walls low. The probability of producing freeze-thaw damage in BIPV/T walls is 61.56% lower than that of ordinary walls, which improves the durability of the building envelope. The air channels of the BIPV/T wall can play a role in cooling down the PV modules, whose photovoltaic conversion efficiency is consistently above 18%.

Key words

solarenergy system / numerical models / heat transfer / moisture transfer / freeze-thaw risk

Cite this article

Download Citations
Yu Shui, Xu Yijia, Sun Shengkun, Cui Enning, Liu Yang. CHARACTERIZATION OF THERMAL AND MOISTURE TRANSFER OF BIPV/T WALLS IN SEVERE COLD REGIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 501-509 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0768

References

[1] CORTI P, CAPANNOLO L, BONOMO P, et al.Comparative analysis of BIPV solutions to define energy and cost-effectiveness in a case study[J]. Energies, 2020, 13(15): 3827.
[2] GB/T 51368—2019, 建筑光伏系统应用技术标准[S]. GB/T 51368—2019, Application technical standard of building photovoltaic system[S].
[3] 罗坤. 一种新型光伏-水/空气复合墙体的季节性实验研究[D]. 合肥: 中国科学技术大学, 2020.
LUO K. Seasonal experimental study on a new type of photovoltaic-water/air composite wall[D]. Hefei: University of Science and Technology of China, 2020.
[4] ATHIENITIS A K, BARONE G, BUONOMANO A, et al.Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: dynamic modelling and simulation[J]. Applied energy, 2018, 209: 355-382.
[5] CHOW T T, FONG K F, CHAN A L S, et al. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong[J]. Applied energy, 2006, 83(1): 42-54.
[6] JI J, YI H, PEI G, et al.Study of PV-Trombe wall assisted with DC fan[J]. Building and environment, 2007, 42(10): 3529-3539.
[7] JI J, YI H, HE W, et al.Modeling of a novel Trombe wall with PV cells[J]. Building and environment, 2007, 42(3): 1544-1552.
[8] AGATHOKLEOUS R A, KALOGIROU S A, KARELLAS S.Exergy analysis of a naturally ventilated building integrated photovoltaic/thermal (BIPV/T) system[J]. Renewable energy, 2018, 128: 541-552.
[9] TEO H G, LEE P S, HAWLADER M N A. An active cooling system for photovoltaic modules[J]. Applied energy, 2012, 90(1): 309-315.
[10] 虞丽丹. 严寒地区空气型光伏光热墙体系统综合性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
YU L D. Study on the comprehensive performance of an air-cooling PV/T wall system in cold climate regions[D]. Harbin: Harbin Institute of Technology, 2020.
[11] 樊苗苗, 夏小康, 顾涛, 等. 太阳能光伏光热/催化净化复合技术的研究进展[J]. 太阳能学报, 2023, 44(7): 96-106.
FAN M M, XIA X K, GU T, et al. Research progress on solar photovoltaic/thermal-catalytic/purification comperhen sive technology[J]. Acta energiae solaris sinica, 2023, 44(7): 96-106.
[12] YU G, YU J, HU Y, et al.Moisture transport analysis for integrated structures of flat plate solar collector and building envelope[J]. Solar energy, 2021, 217: 145-154.
[13] GHOLAMI H, RØSTVIK H N. Economic analysis of BIPV systems as a building envelope material for building skins in Europe[J]. Energy, 2020, 204: 117931.
[14] 朱丽, 王珍珍, 张吉强, 等. 建筑一体化光伏相变系统性能模拟研究[J]. 太阳能学报, 2020, 41(7): 183-189.
ZHU L, WANG Z Z, ZHANG J Q, et al. Simulation study on performance of building integrated photovoltaic coupled with phase change material (PV-PCM)[J]. Acta energiae solaris sinica, 2020, 41(7): 183-189.
[15] VASILYEV G P, LICHMAN V A, PESKOV N V, et al.Simulation of heat and moisture transfer in a multiplex structure[J]. Energy and buildings, 2015, 86: 803-807.
[16] RAHMAN M M, HASANUZZAMAN M, RAHIM N A.Effects of various parameters on PV-module power and efficiency[J]. Energy conversion and management, 2015, 103: 348-358.
[17] XIE H, YU B, WANG J, et al.A novel disinfected Trombe wall for space heating and virus inactivation: concept and performance investigation[J]. Applied energy, 2021, 291: 116789.
[18] 朱自强. 应用计算流体力学[M]. 北京: 北京航空航天大学出版社, 1998.
ZHU Z Q. Applied computational fluid dynamics[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1998.
[19] BELLEUDY C, WOLOSZYN M, CHHAY M, et al.A 2D model for coupled heat, air, and moisture transfer through porous media in contact with air channels[J]. International journal of heat and mass transfer, 2016, 95: 453-465.
[20] BEJAN A.Convection heat transfer[M]. Hoboken: Wiley, 2013.
[21] GB 50176—2016, 民用建筑热工设计规范[S].GB 50176—2016, Code for thermal design of civil buildings[S].
[22] GB 50736—2012, 民用建筑供暖通风与空气调节设计规范[S].GB 50736—2012, Design code for heating ventilation and air conditioning of civil buildings[S].
[23] ASAN H, SANCAKTAR Y S.Effects of wall's thermophysical properties on time lag and decrement factor[J]. Energy and buildings, 1998, 28(2): 159-166.
[24] JIN X, ZHANG X S, CAO Y R, et al.Thermal performance evaluation of the wall using heat flux time lag and decrement factor[J]. Energy and buildings, 2012, 47: 369-374.
[25] 桑国臣, 程芳玥, 刘瑶, 等. 围护结构太阳辐射吸收系数对太阳能采暖建筑外墙热性能的影响[J]. 太阳能学报, 2023, 44(12): 33-40.
SANG G C, CHENG F Y, LIU Y, et al. Influence of solar absorptivity of building envelope on thermal performance of exteriorwall of solar heating building[J]. Acta energiae solaris sinica, 2023, 44(12): 33-40.
[26] KONG F H, ZHANG Q L.Effect of heat and mass coupled transfer combined with freezing process on building exterior envelope[J]. Energy and buildings, 2013, 62: 486-495.
[27] STRAUBE J, SCHUMACHER C, MENSINGA P.Assessing the freeze-thaw resistance of clay brick for interior insulation retrofit projects[C]// Proceedings of the XI International Conference Thermal Performance of the Exterior Envelopes of Whole Buildings. Clearwater, FL, USA, 2010.
[28] 牛荻涛, 杨德柱, 罗大明. 混凝土结构耐久性评定方法体系[J]. 建筑结构, 2021, 51(17): 115-121, 114.
NIU D T, YANG D Z, LUO D M. Durability assessment method of existing concrete structures[J]. Building structure, 2021, 51(17): 115-121, 114.
[29] EVANS D L.Simplified method for predicting photovoltaic array output[J]. Solar energy, 1981, 27(6): 555-560.
PDF(5078 KB)

Accesses

Citation

Detail

Sections
Recommended

/