OPTIMIZATION OF WIND TURBINE BLADE BEAM CAP LAYUP BASED ON GRID SEARCH METHOD

Kou Haixia, Zhao Haibo, Wei Kongyuan, Yang Bowen

Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 84-90.

PDF(1402 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1402 KB)
Acta Energiae Solaris Sinica ›› 2025, Vol. 46 ›› Issue (9) : 84-90. DOI: 10.19912/j.0254-0096.tynxb.2024-0774

OPTIMIZATION OF WIND TURBINE BLADE BEAM CAP LAYUP BASED ON GRID SEARCH METHOD

  • Kou Haixia1, Zhao Haibo1, Wei Kongyuan2, Yang Bowen1
Author information +
History +

Abstract

A 5 MW composite wind turbine blade was taken as the research subject. Typical load conditions such as gravity, centrifugal force, and aerodynamic force were fully taken into account. Based on the grid search method and combined with the classical laminated plate theory, we aimed to optimize the layering ratio and sequence of the composite laminated layer of the upper and lower beam caps of the main beam. By focusing on maximizing stress reduction and increasing bending stiffness, we were able to determine the optimal layering scheme for the beam cap. The results demonstrated a significant decrease in maximum stress and an increase in bending stiffness for the optimized blade main beam under the same load condition.

Key words

composite materials / wind turbine blades / structural optimization / layering parameter / grid search

Cite this article

Download Citations
Kou Haixia, Zhao Haibo, Wei Kongyuan, Yang Bowen. OPTIMIZATION OF WIND TURBINE BLADE BEAM CAP LAYUP BASED ON GRID SEARCH METHOD[J]. Acta Energiae Solaris Sinica. 2025, 46(9): 84-90 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0774

References

[1] 崔旭, 王祖昊. CFRP层合板力学性能数值模拟的研究进展[J]. 航空制造技术, 2023, 66(15): 60-70.
CUI X, WANG Z H.Research progress on numerical simulation of mechanical properties of CFRP laminates[J]. Aeronautical manufacturing technology, 2023, 66(15): 60-70.
[2] 蔡新, 潘盼, 朱杰, 等. 风力发电机叶片[M]. 北京:中国水利水电出版社, 2014.
CAI X, PAN P, ZHU J, et al.Wind turbine blade[M]. Beijing: China Water and Power Press, 2014.
[3] THOMSEN O T.Sandwich materials for wind turbine blades: present and future[J]. Journal of sandwich structures and materials, 2009, 11(1): 7-26.
[4] 王海生, 缪维跑, 李春, 等. 主梁腹板偏置及复合材料铺层的大型风电叶片结构性能分析[J]. 中国电机工程学报, 2023, 43(19): 7509-7519.
WANG H S, MIAO W P, LI C, et al.Structural performance analysis of large wind turbine blades based on main beam web offset and composite material Layering[J]. Proceedings of the CSEE, 2023, 43(19): 7509-7519.
[5] 王海生, 缪维跑, 张立, 等. 基于主梁腹板构型的大型风电弯扭耦合叶片结构性能研究[J]. 太阳能学报, 2023, 44(3): 29-38.
WANG H S, MIAO W P, ZHANG L, et al.Research on main beam web configuration of bend-twist coupling blade of large wind turbine with composite laying[J]. Acta energiae solaris sinica, 2023, 44(3): 29-38.
[6] 董新洪, 孙鹏文, 张兰挺, 等. 风电叶片铺层参数多目标优化设计[J]. 机械工程学报, 2022, 58(4): 165-173.
DONG X H, SUN P W, ZHANG L T, et al.Multi-objective optimization of ply parameter for wind turbine blade[J]. Journal of mechanical engineering, 2022, 58(4): 165-173.
[7] 孙鹏文, 邢哲健, 王慧敏, 等. 复合纤维风电叶片结构铺层优化设计研究[J]. 太阳能学报, 2015, 36(6): 1410-1417.
SUN P W, XING Z J, WANG H M, et al.Study on optimization design of wind turbine blade with composite fiber limination structure[J]. Acta energiae solaris sinica, 2015, 36(6): 1410-1417.
[8] 马志坤, 孙鹏文, 张兰挺, 等. 基于DMO的风电叶片细观纤维铺角优化设计[J]. 太阳能学报, 2022, 43(4): 440-445.
MA Z K, SUN P W, ZHANG L T, et al.Optimization design of micro micor ply angle for wind turbine blades based on DMO[J]. Acta energiae solaris sinica, 2022, 43(4): 440-445.
[9] 张志强, 乔印虎, 王帅帅. 复合材料风电叶片铺层参数优化[J]. 太阳能学报, 2023, 44(3): 97-103.
ZHANG Z Q, QIAO Y H, WANG S S.Optimization of lamination parameters for composite wind turbine blades[J]. Acta energiae solaris sinica, 2023, 44(3): 97-103.
[10] WANG L, KOLIOS A, NISHINO T, et al.Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm[J]. Composite structures, 2016, 153: 123-138.
[11] 孙鹏文, 侯战华, 岳彩宾, 等. 基于遗传算法的风电叶片结构铺层厚度优化[J]. 太阳能学报, 2016, 37(6): 1566-1572.
SUN P W, HOU Z H, YUE C B, et al.Ply thickness optimization of wind turbine blade based on genetic algorithm[J]. Acta energiae solaris sinica, 2016, 37(6): 1566-1572.
[12] HASHIN Z.Failure criteria for unidirectional fiber composites[J]. Journal of applied mechanics, 1980, 47(2): 329-334.
[13] 王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012.
WANG Y X.Mechanics and structural design of composite materials[M]. Shanghai: East China University of Science and Technology Press, 2012.
[14] SON H, FONG Y. Fast grid search and bootstrap-based inference for continuous two-phase polynomial regression models[J]. Environmetrics, 2021, 32(3): e2664.1-e2664.16.
[15] 张立, 闫阳天, 李春, 等. 兆瓦级水平轴风力机叶片铺层设计参数影响分析[J]. 热能动力工程, 2021, 36(6): 133-142.
ZHANG L, YAN Y T, LI C, et al.Analysis on the influence of layup design parameters of megawatt horizontal axis wind turbine blades[J]. Journal of engineering for thermal energy and power, 2021, 36(6): 133-142.
[16] YANG R, QUAN P.Effect of main spar ply Parameters on performance of composite wind turbine blades[J]. Journal of physics: conference series, 2018, 1074(1): 012061.
PDF(1402 KB)

Accesses

Citation

Detail

Sections
Recommended

/